Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add AMD codeGen unit tests #4509

Merged
merged 1 commit into from
Dec 12, 2019
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
96 changes: 89 additions & 7 deletions tests/python/unittest/test_codegen_rocm.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,13 +16,15 @@
# under the License.
import tvm
import numpy as np
import unittest

tx = tvm.thread_axis("threadIdx.x")
ty = tvm.thread_axis("threadIdx.y")
bx = tvm.thread_axis("blockIdx.x")
by = tvm.thread_axis("blockIdx.y")

@unittest.skipIf(not tvm.rocm(0).exist or not tvm.module.enabled("rocm"), "skip because rocm is not enabled..")
def test_rocm_cross_thread_reduction():
if not tvm.rocm(0).exist or not tvm.module.enabled("rocm"):
print("skip because rocm is not enabled..")
return

# based on the reduction tutorial
n = tvm.var("n")
m = tvm.var("m")
Expand All @@ -33,9 +35,8 @@ def test_rocm_cross_thread_reduction():
ko, ki = s[B].split(B.op.reduce_axis[0], factor=16)
BF = s.rfactor(B, ki)
xo, xi = s[B].split(s[B].op.axis[0], factor=32)
s[B].bind(xo, tvm.thread_axis("blockIdx.x"))
s[B].bind(xi, tvm.thread_axis("threadIdx.y"))
tx = tvm.thread_axis("threadIdx.x")
s[B].bind(xo, bx)
s[B].bind(xi, ty)
s[B].bind(s[B].op.reduce_axis[0], tx)
s[BF].compute_at(s[B], s[B].op.reduce_axis[0])
s[B].set_store_predicate(tx.var.equal(0))
Expand All @@ -49,6 +50,87 @@ def test_rocm_cross_thread_reduction():
tvm.testing.assert_allclose(
b.asnumpy(), np.sum(a.asnumpy(), axis=1), rtol=1e-4)


@unittest.skipIf(not tvm.rocm(0).exist or not tvm.module.enabled("rocm"), "skip because rocm is not enabled..")
def test_rocm_inf_nan():
def check_inf_nan(ctx, n, value, dtype):
A = tvm.placeholder((n,), name='A', dtype=dtype)
inf_value = tvm.const(value, dtype=dtype)
C = tvm.compute((n,), lambda i: inf_value, name='C')
s = tvm.create_schedule(C.op)
s[C].bind(s[C].op.axis[0], tx)
fun = tvm.build(s, [A, C], "rocm")
a = tvm.nd.empty((n,), A.dtype, ctx)
c = tvm.nd.empty((n,), A.dtype, ctx)
# Only need to test compiling here
fun(a, c)

ctx = tvm.rocm(0)

check_inf_nan(ctx, 1, -float('inf'), 'float32')
check_inf_nan(ctx, 1, -float('inf'), 'float64')
check_inf_nan(ctx, 1, float('inf'), 'float32')
check_inf_nan(ctx, 1, float('inf'), 'float64')
check_inf_nan(ctx, 1, float('nan'), 'float32')
check_inf_nan(ctx, 1, float('nan'), 'float64')

@unittest.skipIf(not tvm.rocm(0).exist or not tvm.module.enabled("rocm"), "skip because rocm is not enabled..")
def test_rocm_reducition_binding():
k = tvm.reduce_axis((0, 32), 'k')
A = tvm.placeholder((96, 32), name='A')
B = tvm.compute( (96,), lambda m:
tvm.sum(A[m, k], axis=k),
name='B')
s = tvm.create_schedule(B.op)

s[B].reorder(B.op.reduce_axis[0], B.op.axis[0])

mo, _ = s[B].split(B.op.axis[0], 32)
s[B].bind(mo, bx)

@unittest.skipIf(not tvm.rocm(0).exist or not tvm.module.enabled("rocm"), "skip because rocm is not enabled..")
def test_rocm_copy():

def check_rocm(dtype, n):
A = tvm.placeholder((n,), name='A', dtype=dtype)
ctx = tvm.rocm(0)
a_np = np.random.uniform(size=(n,)).astype(A.dtype)
a = tvm.nd.empty((n,), A.dtype, ctx).copyfrom(a_np)
b_np = a.asnumpy()
tvm.testing.assert_allclose(a_np, b_np)
tvm.testing.assert_allclose(a_np, a.asnumpy())

for _ in range(100):
dtype = np.random.choice(["float32", "float16", "int8", "int32"])
logN = np.random.randint(1, 15)
peturb = np.random.uniform(low=0.5, high=1.5)
check_rocm(dtype, int(peturb * (2 ** logN)))

@unittest.skipIf(not tvm.rocm(0).exist or not tvm.module.enabled("rocm"), "skip because rocm is not enabled..")
def test_rocm_vectorize_add():
num_thread = 8

def check_rocm(dtype, n, lanes):
A = tvm.placeholder((n,), name='A', dtype="%sx%d" % (dtype, lanes))
B = tvm.compute((n,), lambda i: A[i]+tvm.const(1, A.dtype), name='B')
s = tvm.create_schedule(B.op)
xo, xi = s[B].split(B.op.axis[0], factor=num_thread)
s[B].bind(xo, bx)
s[B].bind(xi, tx)
fun = tvm.build(s, [A, B], "rocm")
ctx = tvm.rocm(0)
a = tvm.nd.empty((n,), A.dtype, ctx).copyfrom(
np.random.uniform(size=(n, lanes)))
c = tvm.nd.empty((n,), B.dtype, ctx)
fun(a, c)
tvm.testing.assert_allclose(c.asnumpy(), a.asnumpy() + 1)

check_rocm("float32", 64, 2)
check_rocm("float16", 64, 2)

if __name__ == "__main__":
test_rocm_cross_thread_reduction()
test_rocm_inf_nan()
test_rocm_reducition_binding()
test_rocm_copy()
test_rocm_vectorize_add()