Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relay/Topi][Op] Added native DepthToSpace and SpaceToDepth Operators #4566

Merged
merged 11 commits into from
Dec 24, 2019
20 changes: 20 additions & 0 deletions include/tvm/relay/attrs/nn.h
Original file line number Diff line number Diff line change
Expand Up @@ -821,6 +821,26 @@ struct DeformableConv2DAttrs : public tvm::AttrsNode<DeformableConv2DAttrs> {
}
};

/*! \brief Attributes used in subpixel operators */
struct SubPixelAttrs : public tvm::AttrsNode<SubPixelAttrs> {
int block_size;
std::string layout;
std::string mode;

TVM_DECLARE_ATTRS(SubPixelAttrs, "relay.attrs.SubPixelAttrs") {
TVM_ATTR_FIELD(block_size)
.describe("The size of subpixel blocks to compose or decompose.")
.set_default(1);
TVM_ATTR_FIELD(layout).set_default("NCHW").describe(
"Dimension ordering of input data. Can be 'NCHW', 'NHWC', etc."
"'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
"dimensions respectively.");
TVM_ATTR_FIELD(mode).set_default("DCR").describe(
"Indicates order in which channels are accessed. Must be one of"
"DCR or CDR.");
}
}; // struct SubPixelAttrs

} // namespace relay
} // namespace tvm
#endif // TVM_RELAY_ATTRS_NN_H_
50 changes: 2 additions & 48 deletions python/tvm/relay/frontend/onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -540,34 +540,7 @@ def _impl_v11(cls, inputs, attr, params):

block_size = int(attr['blocksize'])
mode = attr.get("mode", "DCR")

# handle NCHW layout
indata = infer_value_simulated(inputs[0], params)
in_n, in_c, in_h, in_w = indata.shape

# reshape to proper output
new_c = int(in_c / (block_size * block_size))
new_h = in_h * block_size
new_w = in_w * block_size
newshape = (in_n, new_c, new_h, new_w)

if mode == "DCR":
# expand input to larger dimension.
expanded = _op.reshape(inputs[0],
newshape=(in_n, block_size, block_size, new_c, in_h, in_w))
# reorder to expand spatial blocks.
transposed = _op.transpose(expanded, axes=(0, 3, 4, 1, 5, 2))

else: # CRD mode
# expand input to larger dimension.
expanded = _op.reshape(inputs[0],
newshape=(in_n, new_c, block_size, block_size, in_h, in_w))
# reorder to expand spatial blocks.
transposed = _op.transpose(expanded, axes=(0, 1, 4, 2, 5, 3))

return AttrCvt(op_name="reshape",
extras={'newshape': newshape},
ignores=['mode', 'blocksize'])([transposed], attr)
return _op.nn.depth_to_space(inputs[0], block_size, mode=mode)


class SpaceToDepth(OnnxOpConverter):
Expand All @@ -578,26 +551,7 @@ class SpaceToDepth(OnnxOpConverter):
def _impl_v1(cls, inputs, attr, params):

block_size = int(attr['blocksize'])

# handle NCHW layout
indata = infer_value_simulated(inputs[0], params)
in_n, in_c, in_h, in_w = indata.shape

# reshape to proper output
new_c = in_c * (block_size * block_size)
new_h = int(in_h / block_size)
new_w = int(in_w / block_size)
newshape = (in_n, new_c, new_h, new_w)

# expand input to larger dimension.
expanded = _op.reshape(inputs[0],
newshape=(in_n, in_c, new_h, block_size, new_w, block_size))
# reorder to expand spatial blocks.
transposed = _op.transpose(expanded, axes=(0, 3, 5, 1, 2, 4))

return AttrCvt(op_name="reshape",
extras={'newshape': newshape},
ignores=['blocksize'])([transposed], attr)
return _op.nn.space_to_depth(inputs[0], block_size)


class Concat(OnnxOpConverter):
Expand Down
66 changes: 4 additions & 62 deletions python/tvm/relay/frontend/tensorflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -664,76 +664,18 @@ def _impl(inputs, attr, params):

def _depth_to_space():
def _impl(inputs, attr, params):
# Need to handle data layouts differently.
input_shape = attr['_input_shapes'][inputs[0]]
block_size = int(attr['block_size'])
if attr['data_format'].decode("utf-8") == 'NHWC':
in_n, in_h, in_w, in_c = input_shape
new_c = int(in_c / (block_size * block_size))

# First expand input to larger dimension.
expanded = _op.reshape(
inputs[0], newshape=(in_n, in_h, in_w, block_size, block_size, new_c))
# Now reorder to expand spatial blocks.
transposed = _op.transpose(expanded, axes=(0, 1, 3, 2, 4, 5))
# Finally reshape to proper output.
new_h = in_h * block_size
new_w = in_w * block_size
newshape = (in_n, new_h, new_w, new_c)

else: # Handle NCHW layout
in_n, in_c, in_h, in_w = input_shape
new_c = int(in_c / (block_size * block_size))

expanded = _op.reshape(
inputs[0], newshape=(in_n, block_size, block_size, new_c, in_h, in_w))
transposed = _op.transpose(expanded, axes=(0, 3, 4, 1, 5, 2))
new_h = in_h * block_size
new_w = in_w * block_size
newshape = (in_n, new_c, new_h, new_w)

return AttrCvt(
op_name="reshape",
extras={'newshape': newshape},
ignores=['data_format', 'block_size'])([transposed], attr)
layout = attr['data_format'].decode("utf-8")
return _op.nn.depth_to_space(inputs[0], block_size, layout)

return _impl


def _space_to_depth():
def _impl(inputs, attr, params):
# Need to handle data layouts differently.
input_shape = attr['_input_shapes'][inputs[0]]
block_size = int(attr['block_size'])
if attr['data_format'].decode("utf-8") == 'NHWC':
in_n, in_h, in_w, in_c = input_shape
new_h = int(in_h / block_size)
new_w = int(in_w / block_size)

# First expand input to larger dimension.
expanded = _op.reshape(
inputs[0], newshape=(in_n, new_h, block_size, new_w, block_size, in_c))
# Now reorder to expand spatial blocks.
transposed = _op.transpose(expanded, axes=(0, 1, 3, 2, 4, 5))
# Finally reshape to proper output.
new_c = in_c * block_size * block_size
newshape = (in_n, new_h, new_w, new_c)

else: # Handle NCHW layout
in_n, in_c, in_h, in_w = input_shape
new_h = int(in_h / block_size)
new_w = int(in_w / block_size)

expanded = _op.reshape(
inputs[0], newshape=(in_n, in_c, new_h, block_size, new_w, block_size))
transposed = _op.transpose(expanded, axes=(0, 3, 5, 1, 2, 4))
new_c = int(in_c * block_size * block_size)
newshape = (in_n, new_c, new_h, new_w)

return AttrCvt(
op_name="reshape",
extras={'newshape': newshape},
ignores=['data_format', 'block_size'])([transposed], attr)
layout = attr['data_format'].decode("utf-8")
return _op.nn.space_to_depth(inputs[0], block_size, layout)

return _impl

Expand Down
22 changes: 22 additions & 0 deletions python/tvm/relay/op/nn/_nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -881,6 +881,28 @@ def compute_cross_entropy_with_logits(attrs, inputs, out_dtype, target):
x, y = inputs
return [-topi.sum(x * y) / x.shape[0]]


@reg.register_compute("nn.depth_to_space")
def compute_depth_to_space(attrs, inputs, out_dtype, target):
block_size = attrs.block_size
layout = attrs.layout
mode = attrs.mode
return [topi.nn.depth_to_space(inputs[0], block_size, layout=layout, mode=mode)]

reg.register_schedule("nn.depth_to_space", schedule_injective)
reg.register_pattern("nn.depth_to_space", OpPattern.INJECTIVE)


@reg.register_compute("nn.space_to_depth")
def compute_space_to_depth(attrs, inputs, out_dtype, target):
block_size = attrs.block_size
layout = attrs.layout
return [topi.nn.space_to_depth(inputs[0], block_size, layout=layout)]

reg.register_schedule("nn.space_to_depth", schedule_injective)
reg.register_pattern("nn.space_to_depth", OpPattern.INJECTIVE)


# shape func
@script
def _conv2d_NCHWc_shape_func(dshape, kshape, strides, padding, dilation, oc_bn):
Expand Down
50 changes: 50 additions & 0 deletions python/tvm/relay/op/nn/nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -1985,3 +1985,53 @@ def cross_entropy_with_logits(predictions, targets):
The computed result.
"""
return _make.cross_entropy_with_logits(predictions, targets)


def depth_to_space(data, block_size, layout='NCHW', mode='DCR'):
"""Convert channels into spatial blocks.

Parameters
----------
data : tvm.relay.Expr
Input data with channels divisible by block_size**2

block_size : int
Size of blocks to convert channels into.

layout : string
One of NCHW or NHWC, indicates channel axis.

mode : string
One of DCR or CDR, indicates which order channels
are accessed in.

Returns
-------
result : tvm.relay.Expr
Tensor with shape [in_batch, in_channel / block_size * block_size,
in_height * block_size, in_width * block_size]
"""
return _make.depth_to_space(data, block_size, layout, mode)


def space_to_depth(data, block_size, layout='NCHW'):
"""Convert spatial blocks into channels.

Parameters
----------
data : tvm.relay.Expr
Input data with spatial dimensions divisible by block_size

block_size : int
Size of blocks to decompose into channels.

layout : string
One of NCHW or NHWC, indicates channel axis.

Returns
-------
result : tvm.relay.Expr
Tensor with shape [in_batch, in_channel * block_size * block_size,
in_height / block_size, in_width / block_size]
"""
return _make.space_to_depth(data, block_size, layout)
5 changes: 5 additions & 0 deletions python/tvm/relay/op/op_attrs.py
Original file line number Diff line number Diff line change
Expand Up @@ -289,3 +289,8 @@ class BinaryDenseAttrs(Attrs):
@register_relay_attr_node
class Conv2DTransposeAttrs(Attrs):
"""Attributes used in Transposed Conv2D operators"""


@register_relay_attr_node
class SubPixelAttrs(Attrs):
"""Attributes used in depth to space and space to depth operators"""
118 changes: 118 additions & 0 deletions src/relay/op/nn/nn.cc
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@
#include <topi/nn/softmax.h>
#include <topi/nn/flatten.h>
#include <vector>
#include <string>
#include "../type_relations.h"
#include "../../pass/alter_op_layout.h"
#include "../op_common.h"
Expand Down Expand Up @@ -959,6 +960,123 @@ Accept logits.
.set_support_level(10)
.add_type_rel("CrossEntropy", CrossEntropyRel);

// Depth to space and space to depth
TVM_REGISTER_NODE_TYPE(SubPixelAttrs);

bool DepthToSpaceRel(const Array<Type>& types, int num_inputs, const Attrs& attrs,
const TypeReporter& reporter) {
CHECK_EQ(types.size(), 2);
const auto* data = types[0].as<TensorTypeNode>();
if (data == nullptr) return false;

static const Layout kNCHW("NCHW");

const SubPixelAttrs* param = attrs.as<SubPixelAttrs>();
CHECK(param != nullptr);
const int block_size = param->block_size;
const Layout in_layout(param->layout);
auto layout_converter = BijectiveLayoutNode::make(in_layout, kNCHW);
CHECK(layout_converter.defined())
<< "DepthToSpace only support input layouts that are convertible from NCHW."
<< " But got " << in_layout;

auto oshape = layout_converter.ForwardShape(data->shape);
oshape.Set(1, indexdiv(oshape[1], (block_size * block_size)));
oshape.Set(2, oshape[2] * block_size);
oshape.Set(3, oshape[3] * block_size);

// Assign output type
reporter->Assign(types[1],
TensorTypeNode::make(layout_converter.BackwardShape(oshape), data->dtype));

return true;
}

// Positional relay function to create DepthToSpace operator
// used by frontend FFI
Expr MakeDepthToSpace(Expr data, int block_size, std::string layout, std::string mode) {
auto attrs = make_node<SubPixelAttrs>();
attrs->block_size = block_size;
attrs->layout = std::move(layout);
attrs->mode = std::move(mode);
static const Op& op = Op::Get("nn.depth_to_space");
return CallNode::make(op, {data}, Attrs(attrs), {});
}

TVM_REGISTER_API("relay.op.nn._make.depth_to_space").set_body_typed(MakeDepthToSpace);

RELAY_REGISTER_OP("nn.depth_to_space")
.describe(R"code(Rearrange input channels into spatial pixels.

- **data**: data is a 4D array of shape
(batch, in_channels, in_height, in_width) for NCHW

- **out**: Output is a 4D array of shape
(batch, in_channels / block_size * block_size, in_height * block_size, in_width * block_size) for NCHW.

)code" TVM_ADD_FILELINE)
.set_attrs_type<SubPixelAttrs>()
.set_num_inputs(1)
.add_argument("data", "Tensor", "The input tensor")
.set_support_level(5)
.add_type_rel("DepthToSpace", DepthToSpaceRel);

bool SpaceToDepthRel(const Array<Type>& types, int num_inputs, const Attrs& attrs,
const TypeReporter& reporter) {
CHECK_EQ(types.size(), 2);
const auto* data = types[0].as<TensorTypeNode>();
if (data == nullptr) return false;

static const Layout kNCHW("NCHW");

const SubPixelAttrs* param = attrs.as<SubPixelAttrs>();
CHECK(param != nullptr);
const int block_size = param->block_size;
const Layout in_layout(param->layout);
auto layout_converter = BijectiveLayoutNode::make(in_layout, kNCHW);
CHECK(layout_converter.defined())
<< "SpaceToDepth only support input layouts that are convertible from NCHW."
<< " But got " << in_layout;

auto oshape = layout_converter.ForwardShape(data->shape);
oshape.Set(1, oshape[1] * (block_size * block_size));
oshape.Set(2, indexdiv(oshape[2], block_size));
oshape.Set(3, indexdiv(oshape[3], block_size));

// Assign output type
reporter->Assign(types[1],
TensorTypeNode::make(layout_converter.BackwardShape(oshape), data->dtype));

return true;
}

// Positional relay function to create SpaceToDepth operator
// used by frontend FFI
Expr MakeSpaceToDepth(Expr data, int block_size, std::string layout) {
auto attrs = make_node<SubPixelAttrs>();
attrs->block_size = block_size;
attrs->layout = std::move(layout);
static const Op& op = Op::Get("nn.space_to_depth");
return CallNode::make(op, {data}, Attrs(attrs), {});
}

TVM_REGISTER_API("relay.op.nn._make.space_to_depth").set_body_typed(MakeSpaceToDepth);

RELAY_REGISTER_OP("nn.space_to_depth")
.describe(R"code(Rearrange spatial pixels into new output channels.

- **data**: data is a 4D array of shape
(batch, in_channels, in_height, in_width) for NCHW

- **out**: Output is a 4D array of shape
(batch, in_channels * block_size * block_size, in_height / block_size, in_width / block_size) for NCHW.

)code" TVM_ADD_FILELINE)
.set_attrs_type<SubPixelAttrs>()
.set_num_inputs(1)
.add_argument("data", "Tensor", "The input tensor")
.set_support_level(5)
.add_type_rel("SpaceToDepth", SpaceToDepthRel);

} // namespace relay
} // namespace tvm
Loading