Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relay][Convert Layout] Handling batch norm layout change. #4600

Merged
merged 1 commit into from
Dec 30, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 29 additions & 0 deletions src/relay/op/nn/nn.cc
Original file line number Diff line number Diff line change
Expand Up @@ -617,6 +617,34 @@ The whole array is rescaled by ``1/(1-p)`` to keep the expected sum of the input
// batch_norm
TVM_REGISTER_NODE_TYPE(BatchNormAttrs);

Array<Array<Layout>> BatchNormInferCorrectLayout(const Attrs& attrs,
const Array<Layout>& new_in_layouts,
const Array<Layout>& old_in_layouts,
const Array<Array<IndexExpr>>& old_in_shapes) {
BatchNormAttrs* param = const_cast<BatchNormAttrs*>(attrs.as<BatchNormAttrs>());

size_t axis =
param->axis < 0 ? param->axis + old_in_shapes[0].size() : static_cast<size_t>(param->axis);

Layout ret = Layout::Undef();

// If new_in_layouts are defined, this code tries to modify the layout.
if (new_in_layouts.defined() && old_in_layouts.defined()) {
// Get the new C axis. Extract the dim in old layout. Find the index of that dim in next layout.
const auto& bn_dim = old_in_layouts[0][axis];
auto new_index = new_in_layouts[0].IndexOf(bn_dim);
param->axis = new_index;
ret = new_in_layouts[0];
} else if (old_in_layouts.defined()) {
ret = old_in_layouts[0];
}
// BN has 5 inputs, 3 outputs. The last 4 inputs and last 2 outputs have "C" layout.
Layout c_layout = Layout("C");

return Array<Array<Layout>>{{ret, c_layout, c_layout, c_layout, c_layout},
{ret, c_layout, c_layout}};
}

bool BatchNormRel(const Array<Type>& types,
int num_inputs,
const Attrs& attrs,
Expand Down Expand Up @@ -708,6 +736,7 @@ axis to be the last item in the input shape.
.add_argument("beta", "Tensor", "The beta offset factor.")
.add_argument("moving_mean", "Tensor", "Running mean of input.")
.add_argument("moving_var", "Tensor", "Running variance of input.")
.set_attr<FInferCorrectLayout>("FInferCorrectLayout", BatchNormInferCorrectLayout)
.set_support_level(1)
.add_type_rel("BatchNorm", BatchNormRel);

Expand Down
2 changes: 1 addition & 1 deletion src/relay/pass/convert_layout.cc
Original file line number Diff line number Diff line change
Expand Up @@ -134,7 +134,7 @@ Pass ConvertLayout(const std::string& desired_layout) {
};
return CreateFunctionPass(
pass_func, 3, "ConvertLayout",
{ir::StringImm::make("InferType"), ir::StringImm::make("SimplifyInference"),
{ir::StringImm::make("InferType"),
ir::StringImm::make("CanonicalizeOps")});
}

Expand Down
49 changes: 49 additions & 0 deletions tests/python/relay/test_pass_convert_op_layout.py
Original file line number Diff line number Diff line change
Expand Up @@ -349,6 +349,54 @@ def expected():
assert analysis.alpha_equal(a, b), "Actual = \n" + str(a)


def test_conv_bn_convert_layout():
""" Check that layout transforms are propagated through bn. """
def before():
x = relay.var("x", shape=(1, 56, 56, 64))
weight = relay.var("weight", shape=(3, 3, 64, 64))
y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1),
data_layout='NHWC', kernel_layout='HWIO')

dtype = "float32"
beta = relay.var("beta", relay.TensorType((64,), dtype))
gamma = relay.var("gamma", relay.TensorType((64,), dtype))
moving_mean = relay.var("moving_mean", relay.TensorType((64,), dtype))
moving_var = relay.var("moving_var", relay.TensorType((64,), dtype))

y = relay.nn.batch_norm(y, gamma, beta, moving_mean, moving_var, axis=3)
y = relay.nn.relu(y[0])
y = relay.Function(analysis.free_vars(y), y)
return y

def expected():
x = relay.var("x", shape=(1, 56, 56, 64))
w = relay.var("weight", shape=(3, 3, 64, 64))
x = relay.layout_transform(x, 'NHWC', 'NCHW')
w = relay.layout_transform(w, 'HWIO', 'OIHW')
y = relay.nn.conv2d(x, w,
channels=64,
kernel_size=(3, 3),
padding=(1, 1))

dtype = "float32"
beta = relay.var("beta", relay.TensorType((64,), dtype))
gamma = relay.var("gamma", relay.TensorType((64,), dtype))
moving_mean = relay.var("moving_mean", relay.TensorType((64,), dtype))
moving_var = relay.var("moving_var", relay.TensorType((64,), dtype))

y = relay.nn.batch_norm(y, gamma, beta, moving_mean, moving_var, axis=1)
y = relay.nn.relu(y[0])
y = relay.layout_transform(y, "NCHW", "NHWC")
y = relay.Function(analysis.free_vars(y), y)
return y

a = before()
a = run_opt_pass(a, transform.ConvertLayout('NCHW'))
b = run_opt_pass(expected(), transform.InferType())

assert analysis.alpha_equal(a, b), "Actual = \n" + str(a)


if __name__ == "__main__":
test_no_convert_layout()
test_conv_convert_layout()
Expand All @@ -358,3 +406,4 @@ def expected():
test_bn_convert_layout()
test_resnet_convert_layout()
test_scalar_convert_layout()
test_conv_bn_convert_layout()