Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[x86 schedule] Fallback schedule for Int8 depthwise. #4733

Merged
merged 1 commit into from
Jan 17, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 30 additions & 0 deletions tests/python/relay/test_op_level2.py
Original file line number Diff line number Diff line change
Expand Up @@ -1182,6 +1182,35 @@ def _has_fast_int8_instructions(asm, target):
assert "vpmulld" in asm and "vpadd" in asm


def test_depthwise_conv2d_int8():
input_dtype = 'uint8'
weight_dtype = 'int8'
output_dtype = 'int32'

data_shape = (1, 64, 56, 56)
x = relay.var("x", relay.TensorType(data_shape, input_dtype))

kernel_shape = (64, 1, 3, 3)
weight = relay.var("weight", relay.TensorType(kernel_shape, weight_dtype))

y = relay.nn.conv2d(x, weight,
kernel_size=(3, 3),
groups=64,
padding=(1, 1),
dilation=(1, 1),
out_dtype=output_dtype)
func = relay.Function([x, weight], y)
wdata = np.random.rand(*kernel_shape) * 10
parameters = {"weight": tvm.nd.array(wdata.astype(weight_dtype))}

targets = ["llvm -mcpu=skylake-avx512", "llvm -mcpu=cascadelake"]
llvm_version = tvm.codegen.llvm_version_major()
for target in targets:
if llvm_version >= 8:
with relay.build_config(opt_level=3):
graph, lib, params = relay.build(func, target, params=parameters)


def test_bitserial_conv2d_infer_type():
# Basic shape test with ambiguous batch.
n, c, h, w = tvm.size_var("n"), 32, 224, 224
Expand Down Expand Up @@ -1234,3 +1263,4 @@ def test_bitpack_infer_type():
test_upsampling()
test_upsampling3d()
test_conv2d_int8_intrinsics()
test_depthwise_conv2d_int8()
22 changes: 14 additions & 8 deletions topi/python/topi/x86/conv2d_int8.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@
from ..nn.util import get_pad_tuple
from ..util import get_const_tuple
from ..nn.conv2d import conv2d_NCHWc_int8
from ..nn.depthwise_conv2d import _get_workload as _get_depthwise_conv2d_workload
from .. import nn
from . import conv2d_avx_1x1, conv2d_avx_common

Expand All @@ -36,15 +37,20 @@ def _get_default_config_int8(cfg, data, kernel, strides, padding, out_dtype, is_
"""
Get default schedule config for the workload
"""
assert not is_depthwise, "Depthwise Int8 not supported"
wkl = _get_conv2d_workload(data, kernel, strides, padding, out_dtype, layout)
is_kernel_1x1 = wkl.hkernel == 1 and wkl.wkernel == 1
if is_kernel_1x1:
conv2d_generic.fallback_schedule_cpu_1x1_int8(
cfg, wkl, int32_lanes=16, num_int8_elements=4)
if is_depthwise:
# Fallback to FP32 default config until a VNNI schedule is defined.
wkl = _get_depthwise_conv2d_workload(data, kernel, strides, padding, out_dtype)
from .depthwise_conv2d import _fallback_schedule
_fallback_schedule(cfg, wkl)
else:
conv2d_generic.fallback_schedule_cpu_common_int8(
cfg, wkl, int32_lanes=16, num_int8_elements=4)
wkl = _get_conv2d_workload(data, kernel, strides, padding, out_dtype, layout)
is_kernel_1x1 = wkl.hkernel == 1 and wkl.wkernel == 1
if is_kernel_1x1:
conv2d_generic.fallback_schedule_cpu_1x1_int8(
cfg, wkl, int32_lanes=16, num_int8_elements=4)
else:
conv2d_generic.fallback_schedule_cpu_common_int8(
cfg, wkl, int32_lanes=16, num_int8_elements=4)


def _is_int8_hw_support(data_dtype, kernel_dtype):
Expand Down