Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Realy][fix] Fix alpha_equal bug for attribute check #4897

Merged
merged 1 commit into from
Feb 17, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/relay/ir/alpha_equal.cc
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,7 @@ class AlphaEqualHandler:
auto compute = [&]() {
if (&lhs == &rhs) return true;
if (auto lhsd = lhs.as<DictAttrsNode>()) {
auto rhsd = lhs.as<DictAttrsNode>();
auto rhsd = rhs.as<DictAttrsNode>();
if (!rhsd) return false;
if (lhsd->dict.size() != rhsd->dict.size()) return false;
for (const auto& k : lhsd->dict) {
Expand Down
2 changes: 2 additions & 0 deletions tests/python/relay/test_ir_nodes.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
# specific language governing permissions and limitations
# under the License.
""" test ir"""
import pytest
import tvm
from tvm import relay
from tvm.tir.expr import *
Expand Down Expand Up @@ -174,6 +175,7 @@ def test_function():
str(fn)
check_json_roundtrip(fn)

@pytest.mark.skip(reason="AttrsEqualHandler doesn't handle Map so far.")
def test_function_attrs():
param_names = ['a', 'b', 'c', 'd']
params = tvm.convert([relay.var(n, shape=(5, 2)) for n in param_names])
Expand Down
25 changes: 24 additions & 1 deletion tests/python/relay/test_pass_alpha_equal.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
import tvm
from tvm import relay
from tvm.relay import analysis
from tvm.relay.testing import run_opt_pass

def alpha_equal(x, y):
"""
Expand Down Expand Up @@ -313,7 +314,7 @@ def test_tuple_get_item_alpha_equal():
assert alpha_equal(relay.TupleGetItem(x, 1), relay.TupleGetItem(x, 1))


def test_multi_node_subgraph():
def test_function_attr():
x0 = relay.var('x0', shape=(10, 10))
w00 = relay.var('w00', shape=(10, 10))
w01 = relay.var('w01', shape=(10, 10))
Expand Down Expand Up @@ -607,6 +608,7 @@ def test_graph_equal():

z3 = relay.add(relay.add(x, x), relay.add(x, x))

assert alpha_equal(z0, z1)
assert alpha_equal(z0, z1)

# z3's dataflow format is different from z0
Expand Down Expand Up @@ -649,6 +651,26 @@ def test_tuple_match():
assert analysis.structural_hash(x) == analysis.structural_hash(y)


def test_fn_attribute():
# create function that performs add
a = relay.var('a', shape=(10, 10))
b = relay.var('b', shape=(10, 10))
add = relay.add(a, b)
add_fn = relay.Function([a, b], add)
add_fn = run_opt_pass(add_fn, relay.transform.InferType())

# create function that performs add with test attribute
c = relay.var('c', shape=(10, 10))
d = relay.var('d', shape=(10, 10))
add_1 = relay.add(c, d)
add_1_fn = relay.Function([c, d], add_1)
add_1_fn = add_1_fn.set_attribute("TestAttribute", tvm.tir.StringImm("test"))
add_1_fn = run_opt_pass(add_1_fn, relay.transform.InferType())

assert not relay.analysis.alpha_equal(add_1_fn, add_fn)
assert not relay.analysis.alpha_equal(add_fn, add_1_fn)


if __name__ == "__main__":
test_tensor_type_alpha_equal()
test_incomplete_type_alpha_equal()
Expand All @@ -672,3 +694,4 @@ def test_tuple_match():
test_var_alpha_equal()
test_graph_equal()
test_hash_unequal()
test_fn_attribute()
36 changes: 35 additions & 1 deletion tests/python/relay/test_pass_fuse_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@ def expected():
z = relay.exp(y)
w = relay.squeeze(z)
f1 = relay.Function([x], w)
f1 = f1.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))
x = relay.var("x", shape=(10, 20))
y = relay.Call(f1, [x])
return relay.Function([x], y)
Expand Down Expand Up @@ -76,6 +77,8 @@ def expected(dshape):
x = relay.var("p0", shape=dshape)
y = relay.add(x, relay.const(1, "float32"))
f0 = relay.Function([x], y)
f0 = f0.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

# segment 1
x = relay.var("p0", shape=dshape)
w = relay.var("p1")
Expand All @@ -86,6 +89,8 @@ def expected(dshape):
y1 = relay.add(relay.const(1, "float32"), y)
y = relay.add(y, y1)
f1 = relay.Function([x, w], y)
f1 = f1.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

# segment 2
x = relay.var("p0", shape=dshape)
w = relay.var("p1")
Expand All @@ -94,6 +99,8 @@ def expected(dshape):
padding=(1,1),
channels=16)
f2 = relay.Function([x, w], z2)
f2 = f2.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

# segment 3
x = relay.var("p0", shape=dshape)
w = relay.var("p1")
Expand All @@ -104,6 +111,8 @@ def expected(dshape):
channels=16)
z3 = relay.add(z3, offset)
f3 = relay.Function([x, w, offset], z3)
f3 = f3.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

# compose
x = relay.var("x", shape=dshape)
y = relay.Call(f0, [x])
Expand Down Expand Up @@ -135,13 +144,15 @@ def expected(dshape):
x = relay.var("x", shape=dshape)
pooled = relay.nn.max_pool2d(x, pool_size=(2, 2), strides=(2, 2), padding=(0, 0))
f0 = relay.Function([x], pooled)
f0 = f0.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

p0 = relay.var("p0", shape=(dshape[0], dshape[1], dshape[2]//2, dshape[3]//2))
p1 = relay.var("p1", shape=dshape)
upsampled = relay.nn.upsampling(p0, scale_h=2, scale_w=2, layout="NCHW")
concat = relay.concatenate((upsampled, p1), axis=1)
out = relay.add(concat, relay.const(1, "float32"))
f1 = relay.Function([p0, p1], out)
f1 = f1.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

x = relay.var("x", shape=dshape)
y = relay.Call(f0, [x])
Expand Down Expand Up @@ -172,10 +183,12 @@ def expected(dshape):
x = relay.var("x", shape=dshape)
pooled = relay.nn.max_pool2d(x, pool_size=(2, 2), strides=(2, 2), padding=(0, 0))
f0 = relay.Function([x], pooled)
f0 = f0.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

p0 = relay.var("p0", shape=(dshape[0], dshape[1], dshape[2]//2, dshape[3]//2))
upsampled = relay.nn.upsampling(p0, scale_h=2, scale_w=2, layout="NCHW")
f1 = relay.Function([p0], upsampled)
f1 = f1.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

x = relay.var("x", shape=dshape)
y = relay.Call(f0, [x])
Expand Down Expand Up @@ -205,10 +218,12 @@ def expected(dshape):
x = relay.var("p0", shape=dshape)
y = relay.add(x, relay.const(1, "float32"))
f1 = relay.Function([x], y)
f1 = f1.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

x = relay.var("p01", shape=dshape)
y = relay.exp(x)
f2 = relay.Function([x], y)
f2 = f2.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

x = relay.var("x", shape=dshape)
y = relay.Call(f1, [x])
Expand Down Expand Up @@ -242,6 +257,7 @@ def expected(dshape, dtype):
p2 = relay.var('p2', shape=dshape, dtype=dtype)
fused_gt = relay.Function([p1, p2],
relay.op.greater(p1, p2))
fused_gt = fused_gt.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))
with sb.if_scope(fused_gt(x, y)):
sb.ret(relay.Function([], x))
with sb.else_scope():
Expand Down Expand Up @@ -271,11 +287,13 @@ def expected(dim):
p1 = relay.var("p1", shape=(3 * dim, dim))
matmul = relay.nn.dense(p0, p1)
f0 = relay.Function([p0, p1], matmul)
f0 = f0.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

p01 = relay.var("p01", shape=(1, 3 * dim))
splitted = relay.split(p01, indices_or_sections=3, axis=1)
out = relay.sigmoid(splitted[0]) + relay.tanh(splitted[1]) * relay.exp(splitted[2])
f1 = relay.Function([p01], out)
f1 = f1.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

X = relay.var("X", shape=(1, dim))
W = relay.var("W", shape=(3 * dim, dim))
Expand Down Expand Up @@ -306,11 +324,13 @@ def expected(dim):
splitted = relay.split(p0, indices_or_sections=3, axis=1)
out = splitted[0]
f0 = relay.Function([p0], out)
f0 = f0.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

p01 = relay.var("p01", shape=(1, dim))
p1 = relay.var("p1", shape=(dim, dim))
out = relay.nn.dense(p01, p1)
f1 = relay.Function([p01, p1], out)
f1 = f1.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

X = relay.var("X", shape=(1, 3 * dim))
W = relay.var("W", shape=(dim, dim))
Expand Down Expand Up @@ -346,8 +366,9 @@ def before(x):

def expected(p0):
f0 = before(p0)
f1 = f0.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))
x = relay.var("x", shape=dshape)
y = relay.Call(f0, [x])
y = relay.Call(f1, [x])
return relay.Function([x], y)

dshape = (1, 16, 64, 64)
Expand Down Expand Up @@ -388,15 +409,18 @@ def expected(dshape):
p0 = relay.var("p0", shape=dshape)
concat = gen_consecutive_tuple(p0)
f0 = relay.Function([p0], concat)
f0 = f0.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

p01 = relay.var("p01", shape=(1, dshape[1]*9, dshape[2], dshape[3]))
pooled = relay.nn.max_pool2d(p01, pool_size=(2, 2), strides=(2, 2), padding=(0, 0))
out = relay.add(pooled, relay.const(1, "float32"))
f1 = relay.Function([p01], out)
f1 = f1.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

p02 = relay.var("p02", shape=(1, dshape[1]*9, dshape[2]//2, dshape[3]//2))
out = relay.add(p02, relay.const(1, "float32"))
f2 = relay.Function([p02], out)
f2 = f2.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

x = relay.var("x", shape=dshape)
y = relay.Call(f0, [x])
Expand Down Expand Up @@ -438,30 +462,36 @@ def expected(dshape):
p0 = relay.var("p0", shape=dshape)
c = conv(p0)
f0 = relay.Function(relay.analysis.free_vars(c), c)
f0 = f0.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

p01 = relay.var("p01", shape=dshape)
c = conv(p01)
f1 = relay.Function(relay.analysis.free_vars(c), c)
f1 = f1.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

p02 = relay.var("p02", shape=dshape)
p12 = relay.var("p12", shape=dshape)
concat1 = relay.concatenate((p02, p12), axis=1)
f_concat1 = relay.Function([p02, p12], concat1)
f_concat1 = f_concat1.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

dshape2 = (dshape[0], dshape[1]*2, dshape[2], dshape[3])

p03 = relay.var("p03", shape=dshape2)
c = conv(p03)
f2 = relay.Function(relay.analysis.free_vars(c), c)
f2 = f2.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

p04 = relay.var("p04", shape=dshape2)
c = conv(p04)
f3 = relay.Function(relay.analysis.free_vars(c), c)
f3 = f3.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

p05 = relay.var("p05", shape=dshape)
p15 = relay.var("p15", shape=dshape)
concat2 = relay.concatenate((p05, p15), axis=1)
f_concat2 = relay.Function([p05, p15], concat2)
f_concat2 = f_concat2.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

x = relay.var("x", shape=dshape)
c1 = relay.Call(f0, [x, relay.var("w1")])
Expand Down Expand Up @@ -499,6 +529,7 @@ def expected():
u = relay.transpose(y, axes=[0, 1])
w = relay.left_shift(z, u)
f1 = relay.Function([x], w)
f1 = f1.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))
x = relay.var("x", shape=(10, 20))
y = relay.Call(f1, [x])
return relay.Function([x], y)
Expand Down Expand Up @@ -529,6 +560,7 @@ def expected():
z = relay.exp(y)
w = relay.squeeze(z)
f1 = relay.Function([x], w)
f1 = f1.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))
x = relay.var("x", shape=(10, 20))
y = relay.Call(f1, [x])
mod = tvm.IRModule()
Expand Down Expand Up @@ -570,13 +602,15 @@ def expected():
for i in range(max_fused_ops):
y = relay.exp(y)
f1 = relay.Function([x], y)
f1 = f1.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))
x = relay.var("x", shape=(10, 20))
z = relay.Call(f1, [x])
xx = relay.var("pp", shape=(10, 20))
yy = xx
for i in range(n-max_fused_ops):
yy = relay.exp(yy)
f2 = relay.Function([xx], yy)
f2 = f2.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))
zz = relay.Call(f2, [z])
return relay.Function([x], zz)

Expand Down
Loading