Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CodeGen][CUDA] Enhance CUDA codegen for SelectNode #4983

Merged
merged 1 commit into from
Mar 11, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions include/tvm/runtime/data_type.h
Original file line number Diff line number Diff line change
Expand Up @@ -112,6 +112,10 @@ class DataType {
bool is_vector() const {
return lanes() > 1;
}
/*! \return whether type is a bool vector type. */
bool is_vector_bool() const {
return is_vector() && bits() == 1;
}
/*!
* \brief Create a new data type by change lanes to a specified value.
* \param lanes The target number of lanes.
Expand Down
51 changes: 50 additions & 1 deletion src/target/source/codegen_cuda.cc
Original file line number Diff line number Diff line change
Expand Up @@ -135,6 +135,13 @@ void CodeGenCUDA::PrintType(DataType t, std::ostream& os) { // NOLINT(*)
}
} else if (t == DataType::Bool()) {
os << "bool"; return;
} else if (t.is_vector_bool()) {
// CUDA does not support bool vectors.
// Use ushort vectors to represent instead.
int n = t.lanes();
if (n <= 4) {
os << "ushort" << n; return;
}
} else if (t.is_uint() || t.is_int()) {
if (t.is_uint()) {
if (t.lanes() != 1) {
Expand Down Expand Up @@ -226,7 +233,7 @@ void CodeGenCUDA::PrintType(DataType t, std::ostream& os) { // NOLINT(*)
}

void CodeGenCUDA::PrintVecBinaryOp(
const std::string&op, DataType t,
const std::string& op, DataType t,
PrimExpr lhs, PrimExpr rhs, std::ostream& os) { // NOLINT(*)
// unpacking operations.
int lanes = t.lanes();
Expand Down Expand Up @@ -561,6 +568,48 @@ void CodeGenCUDA::VisitExpr_(const ShuffleNode* op, std::ostream &os) {
os << ')';
}

void CodeGenCUDA::VisitExpr_(const SelectNode* op, std::ostream &os) {
// Non-vector cases.
if (!op->dtype.is_vector()) {
CodeGenC::VisitExpr_(op, os);
return;
}

// Codegen vector condition case by serializing the select op.
CHECK(op->false_value->dtype == op->dtype &&
op->true_value->dtype == op->dtype &&
op->dtype.lanes() == op->condition.dtype().lanes());

int lanes = op->dtype.lanes();
int scope = BeginScope();

std::string c_var = SSAGetID(PrintExpr(op->condition), op->dtype);
std::string t_var = SSAGetID(PrintExpr(op->true_value), op->dtype);
std::string f_var = SSAGetID(PrintExpr(op->false_value), op->dtype);
std::string r_var = GetUniqueName("_");

this->PrintIndent();
this->PrintType(op->dtype, stream);
stream << ' ' << r_var << ";\n";

// The condition is stored as an ushort vector.
DataType memory_ty(DataType::TypeCode::kUInt, 16, lanes);

for (int i = 0; i < lanes; ++i) {
std::ostringstream item;
item << "(bool(";
PrintVecElemLoad(c_var, memory_ty, i, item);
item << ")?";
PrintVecElemLoad(t_var, op->dtype, i, item);
item << ':';
PrintVecElemLoad(f_var, op->dtype, i, item);
item << ')';
PrintVecElemStore(r_var, op->dtype, i, item.str());
}
os << r_var;
EndScope(scope);
}

inline void PrintConst(const FloatImmNode* op, std::ostream& os, CodeGenCUDA* p) { // NOLINT(*)
switch (op->dtype.bits()) {
case 64: case 32: {
Expand Down
5 changes: 3 additions & 2 deletions src/target/source/codegen_cuda.h
Original file line number Diff line number Diff line change
Expand Up @@ -43,11 +43,11 @@ class CodeGenCUDA final : public CodeGenC {
return (enable_fp16_ || enable_int8_ || need_math_constants_h_ || need_mma_h_);
}
// override behavior
void VisitStmt_(const tir::ForNode* op) final;
void VisitStmt_(const ForNode* op) final;
void PrintStorageSync(const CallNode* op) final;
void PrintStorageScope(const std::string& scope, std::ostream& os) final; // NOLINT(*)
void PrintVecBinaryOp(
const std::string&op, DataType t,
const std::string& op, DataType t,
PrimExpr lhs, PrimExpr rhs, std::ostream& os) final; // NOLINT(*)
void PrintType(DataType t, std::ostream& os) final; // NOLINT(*)
void PrintVecElemLoad(
Expand All @@ -58,6 +58,7 @@ class CodeGenCUDA final : public CodeGenC {
// overload visitor
void VisitExpr_(const RampNode* op, std::ostream& os) final; // NOLINT(*)
void VisitExpr_(const ShuffleNode* op, std::ostream& os) final; // NOLINT(*)
void VisitExpr_(const SelectNode* op, std::ostream& os) final; // NOLINT(*)
void VisitExpr_(const BroadcastNode* op, std::ostream& os) final; // NOLINT(*)
void VisitExpr_(const FloatImmNode *op, std::ostream& os) final;
void VisitExpr_(const CallNode *op, std::ostream& os) final;
Expand Down
30 changes: 29 additions & 1 deletion tests/python/unittest/test_codegen_cuda.py
Original file line number Diff line number Diff line change
Expand Up @@ -321,6 +321,33 @@ def check_cuda(dtype, m=32, n=32):
check_cuda("float32")
check_cuda("float16")

def test_cuda_floordiv_with_vectorization():
if not tvm.gpu(0).exist or not tvm.runtime.enabled("cuda"):
print("skip because cuda is not enabled..")
return

with tvm.target.cuda():
# B[i] = A[floordiv(i, k)]
n = 256
k = 37
A = te.placeholder((n,), name='A')
B = te.compute((n,), lambda i: A[tvm.tir.floordiv(i, k)], name='B')
s = te.create_schedule(B.op)
xo, xi = s[B].split(B.op.axis[0], nparts=1)
xio, xii = s[B].split(xi, factor=4)
s[B].vectorize(xii)
s[B].bind(xo, bx)
s[B].bind(xio, tx)
func = tvm.build(s, [A, B], 'cuda')

ctx = tvm.gpu(0)
a_np = np.random.uniform(size=(n,)).astype(A.dtype)
b_np = np.array([a_np[i//k] for i in range(0, n)])
a_nd = tvm.nd.array(a_np, ctx)
b_nd = tvm.nd.array(np.zeros(b_np.shape, dtype=b_np.dtype), ctx)
func(a_nd, b_nd)
tvm.testing.assert_allclose(b_nd.asnumpy(), b_np, rtol=1e-3)

if __name__ == "__main__":
test_cuda_vectorize_add()
test_cuda_multiply_add()
Expand All @@ -331,4 +358,5 @@ def check_cuda(dtype, m=32, n=32):
test_cuda_reducition_binding()
test_rfactor_predicates()
test_cuda_const_float_to_half()
test_cuda_reduction()
test_cuda_reduction()
test_cuda_floordiv_with_vectorization()