Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[TFLITE]TOP_K op parser support #5051

Merged
merged 2 commits into from
Mar 30, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 19 additions & 0 deletions python/tvm/relay/frontend/tflite.py
Original file line number Diff line number Diff line change
Expand Up @@ -129,6 +129,7 @@ def __init__(self, model, subgraph, exp_tab):
'TAN': self.convert_tan,
'TANH':self.convert_tanh,
'TILE': self.convert_tile,
'TOPK_V2': self.convert_topk_v2,
'TRANSPOSE_CONV': self.convert_transpose_conv,
'TRANSPOSE': self.convert_transpose,
'UNPACK': self.convert_unpack,
Expand Down Expand Up @@ -1550,6 +1551,24 @@ def convert_tile(self, op):

return out

def convert_topk_v2(self, op):
""" Convert TFLite TOPK_v2 """
try:
from tflite.Operator import Operator
except ImportError:
raise ImportError("The tflite package must be installed")

assert isinstance(op, Operator)
input_tensors = self.get_input_tensors(op)
assert len(input_tensors) == 2, "input tensors length should be 2"
input_tensor = input_tensors[0]
input_tensor_idx = input_tensor.tensor_idx
in_expr = self.get_expr(input_tensor_idx)
k = self.get_tensor_value(input_tensors[1])
out = _op.topk(in_expr, int(k))

return out

def convert_pool2d(self, op, pool_type):
"""pool2d implementation."""
try:
Expand Down
19 changes: 19 additions & 0 deletions tests/python/frontend/tflite/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -272,6 +272,24 @@ def test_forward_slice():
_test_slice(np.arange(8, dtype=np.int32).reshape((2, 4)), begin=[0, 1], size=[-1, -1])
_test_slice(np.arange(5, dtype=np.int32).reshape((5, )), begin=[4], size=[-1])

#######################################################################
# Topk
# ----
def _test_topk(in_shape, k=1):
""" One iteration of TOPK """
data = np.random.uniform(size=in_shape).astype('float32')
with tf.Graph().as_default():
in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype)
out = nn_ops.top_k(in_data, k, name='TopK')
compare_tflite_with_tvm(data, 'Placeholder:0', [in_data], [out[0]])

def test_forward_topk():
""" TOPK """
_test_topk((3,), 1)
_test_topk((3,), 3)
_test_topk((3, 5, 7), 3)
_test_topk((3, 5, 7), 3)

#######################################################################
# transpose
# ---------
Expand Down Expand Up @@ -1775,6 +1793,7 @@ def test_forward_mediapipe_hand_landmark():
test_all_resize()
test_forward_squeeze()
test_forward_slice()
test_forward_topk()
test_forward_depthtospace()
test_forward_spacetodepth()

Expand Down