Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relay][Strategy] Adjust strategy plevel to achieve expected performance by default #5118

Merged
merged 1 commit into from
Mar 22, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions python/tvm/relay/op/strategy/arm_cpu.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,13 +67,13 @@ def conv2d_strategy_arm_cpu(attrs, inputs, out_type, target):
wrap_compute_conv2d(topi.arm_cpu.conv2d_nchw_winograd),
wrap_topi_schedule(topi.arm_cpu.schedule_conv2d_nchw_winograd),
name="conv2d_nchw_winograd.arm_cpu",
plevel=15)
plevel=5)
if "nnpack" in target.libs and pt == 1 and pb == 1 and pl == 1 and pr == 1:
strategy.add_implementation(
wrap_compute_conv2d(topi.arm_cpu.conv2d_nchw_winograd_nnpack),
wrap_topi_schedule(topi.arm_cpu.schedule_conv2d_nchw_winograd_nnpack),
name="conv2d_nchw_winograd_nnpack.arm_cpu",
plevel=13)
plevel=15)
elif re.match(r"OIHW\d*o", kernel_layout):
strategy.add_implementation(
wrap_compute_conv2d(topi.arm_cpu.conv2d_nchw_spatial_pack),
Expand Down Expand Up @@ -177,7 +177,7 @@ def conv2d_winograd_without_weight_transfrom_strategy_arm_cpu(attrs, inputs, out
wrap_topi_schedule(
topi.arm_cpu.schedule_conv2d_nchw_winograd_nnpack_without_weight_transform),
name="conv2d_nchw_winograd_nnpack_withou_weight_transform.arm_cpu",
plevel=5)
plevel=15)
else:
raise RuntimeError("Unsupported kernel shape: {}".format(kernel.shape))
else:
Expand Down
2 changes: 1 addition & 1 deletion python/tvm/relay/op/strategy/bifrost.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ def conv2d_strategy_bifrost(attrs, inputs, out_type, target):
wrap_compute_conv2d(topi.bifrost.conv2d_nchw_winograd),
wrap_topi_schedule(topi.bifrost.schedule_conv2d_nchw_winograd),
name="conv2d_nchw_winograd.bifrost",
plevel=15)
plevel=5)
elif re.match(r"OIHW\d*o", kernel_layout):
strategy.add_implementation(
wrap_compute_conv2d(topi.bifrost.conv2d_nchw_spatial_pack),
Expand Down
6 changes: 3 additions & 3 deletions python/tvm/relay/op/strategy/cuda.py
Original file line number Diff line number Diff line change
Expand Up @@ -135,7 +135,7 @@ def conv2d_strategy_cuda(attrs, inputs, out_type, target):
wrap_compute_conv2d(topi.cuda.conv2d_cudnn, True),
wrap_topi_schedule(topi.cuda.schedule_conv2d_cudnn),
name="conv2d_cudnn.cuda",
plevel=5)
plevel=15)
elif is_depthwise_conv2d(data.shape, layout, kernel.shape, kernel_layout, groups):
if layout == "NCHW":
assert kernel_layout == "OIHW"
Expand Down Expand Up @@ -295,13 +295,13 @@ def dense_strategy_cuda(attrs, inputs, out_type, target):
wrap_compute_dense(topi.cuda.dense_large_batch),
wrap_topi_schedule(topi.cuda.schedule_dense_large_batch),
name="dense_large_batch.cuda",
plevel=15)
plevel=5)
if target.target_name == "cuda" and "cublas" in target.libs:
strategy.add_implementation(
wrap_compute_dense(topi.cuda.dense_cublas),
wrap_topi_schedule(topi.cuda.schedule_dense_cublas),
name="dense_cublas.cuda",
plevel=20)
plevel=15)
return strategy

@batch_matmul_strategy.register(["cuda", "gpu"])
Expand Down
2 changes: 1 addition & 1 deletion python/tvm/relay/op/strategy/mali.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ def conv2d_strategy_mali(attrs, inputs, out_type, target):
wrap_compute_conv2d(topi.mali.conv2d_nchw_winograd),
wrap_topi_schedule(topi.mali.schedule_conv2d_nchw_winograd),
name="conv2d_nchw_winograd.mali",
plevel=15)
plevel=5)
elif re.match(r"OIHW\d*o", kernel_layout):
strategy.add_implementation(
wrap_compute_conv2d(topi.mali.conv2d_nchw_spatial_pack),
Expand Down
18 changes: 8 additions & 10 deletions python/tvm/relay/op/strategy/rocm.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,13 +77,12 @@ def conv2d_strategy_rocm(attrs, inputs, out_type, target):
else:
raise RuntimeError("Unsupported conv2d layout {} for CUDA".format(layout))
# add miopen implementation
if "miopen" in target.libs:
if layout == "NCHW":
strategy.add_implementation(
wrap_compute_conv2d(topi.rocm.conv2d_nchw_miopen, True),
wrap_topi_schedule(topi.rocm.schedule_conv2d_nchw_miopen),
name="conv2d_nchw_miopen.rocm",
plevel=15)
if "miopen" in target.libs and layout == "NCHW":
strategy.add_implementation(
wrap_compute_conv2d(topi.rocm.conv2d_nchw_miopen, True),
wrap_topi_schedule(topi.rocm.schedule_conv2d_nchw_miopen),
name="conv2d_nchw_miopen.rocm",
plevel=15)
elif is_depthwise_conv2d(data.shape, layout, kernel.shape, kernel_layout, groups):
if layout == "NCHW":
assert kernel_layout == "OIHW"
Expand Down Expand Up @@ -120,9 +119,8 @@ def conv2d_strategy_rocm(attrs, inputs, out_type, target):
@dense_strategy.register("rocm")
def dense_strategy_rocm(attrs, inputs, out_type, target):
"""Dense strategy for ROCM"""
strategy = _op.OpStrategy()
assert len(inputs[0].shape) == 2 and len(inputs[1].shape) == 2, "Only support 2-dim dense"

strategy = _op.OpStrategy()
strategy.add_implementation(
wrap_compute_dense(topi.rocm.dense),
wrap_topi_schedule(topi.rocm.schedule_dense),
Expand All @@ -133,5 +131,5 @@ def dense_strategy_rocm(attrs, inputs, out_type, target):
wrap_compute_dense(topi.rocm.dense_rocblas),
wrap_topi_schedule(topi.rocm.dense_rocblas),
name="dense_rocblas.rocm",
plevel=5)
plevel=15)
return strategy
6 changes: 3 additions & 3 deletions python/tvm/relay/op/strategy/x86.py
Original file line number Diff line number Diff line change
Expand Up @@ -232,13 +232,13 @@ def dense_strategy_cpu(attrs, inputs, out_type, target):
strategy.add_implementation(wrap_compute_dense(topi.x86.dense_cblas),
wrap_topi_schedule(topi.x86.schedule_dense_cblas),
name="dense_cblas.x86",
plevel=5)
plevel=15)
with SpecializedCondition(m >= 16):
# this implementation may not be well-optimized, so use plevel=8 for now.
strategy.add_implementation(wrap_compute_dense(topi.x86.dense_pack),
wrap_topi_schedule(topi.x86.schedule_dense_pack),
name="dense_pack.x86",
plevel=8)
plevel=5)
return strategy

@batch_matmul_strategy.register("cpu")
Expand All @@ -253,7 +253,7 @@ def batch_matmul_strategy_cpu(attrs, inputs, out_type, target):
strategy.add_implementation(wrap_compute_batch_matmul(topi.x86.batch_matmul_cblas),
wrap_topi_schedule(topi.x86.schedule_batch_matmul_cblas),
name="batch_matmul_cblas.x86",
plevel=5)
plevel=15)
return strategy

@schedule_sparse_dense.register("cpu")
Expand Down