Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Tutorial, QNN] Add tutorial for loading quantized PyTorch model #5321

Merged
merged 8 commits into from
Apr 15, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/dev/relay_pass_infra.rst
Original file line number Diff line number Diff line change
Expand Up @@ -612,7 +612,7 @@ sequential pass example could be like the following to enable IR dumping for
seq = tvm.transform.Sequential([
relay.transform.InferType(),
relay.transform.FoldConstant(),
relay.transform.PrintIR(),
transform.PrintIR(),
relay.transform.EliminateCommonSubexpr(),
relay.transform.AlterOpLayout()
])
Expand Down
237 changes: 237 additions & 0 deletions tutorials/frontend/deploy_prequantized.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,237 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Deploy a Framework-prequantized Model with TVM
==============================================
**Author**: `Masahiro Masuda <https://github.com/masahi>`_
This is a tutorial on loading models quantized by deep learning frameworks into TVM.
Pre-quantized model import is one of the quantization support we have in TVM. More details on
the quantization story in TVM can be found
`here <https://discuss.tvm.ai/t/quantization-story/3920>`_.
Here, we demonstrate how to load and run models quantized by PyTorch, MXNet, and TFLite.
Once loaded, we can run compiled, quantized models on any hardware TVM supports.
"""

#################################################################################
# First, necessary imports
from PIL import Image

import numpy as np

import torch
from torchvision.models.quantization import mobilenet as qmobilenet

import tvm
from tvm import relay
from tvm.contrib.download import download_testdata


#################################################################################
# Helper functions to run the demo
def get_transform():
import torchvision.transforms as transforms
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
return transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])


def get_real_image(im_height, im_width):
img_url = 'https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true'
img_path = download_testdata(img_url, 'cat.png', module='data')
return Image.open(img_path).resize((im_height, im_width))


def get_imagenet_input():
im = get_real_image(224, 224)
preprocess = get_transform()
pt_tensor = preprocess(im)
return np.expand_dims(pt_tensor.numpy(), 0)


def get_synset():
synset_url = ''.join(['https://gist.githubusercontent.com/zhreshold/',
'4d0b62f3d01426887599d4f7ede23ee5/raw/',
'596b27d23537e5a1b5751d2b0481ef172f58b539/',
'imagenet1000_clsid_to_human.txt'])
synset_name = 'imagenet1000_clsid_to_human.txt'
synset_path = download_testdata(synset_url, synset_name, module='data')
with open(synset_path) as f:
return eval(f.read())


def run_tvm_model(mod, params, input_name, inp, target="llvm"):
with relay.build_config(opt_level=3):
json, lib, params = relay.build(mod, target=target, params=params)

runtime = tvm.contrib.graph_runtime.create(json, lib, tvm.context(target, 0))
runtime.set_input(**params)

runtime.set_input(input_name, inp)
runtime.run()
return runtime.get_output(0).asnumpy(), runtime


#################################################################################
# A mapping from label to class name, to verify that the outputs from models below
# are reasonable
synset = get_synset()

#################################################################################
# Everyone's favorite cat image for demonstration
inp = get_imagenet_input()

################################################################################
# Deploy a quantized PyTorch Model
# --------------------------------
# First, we demonstrate how to load deep learning models quantized by PyTorch,
# using our PyTorch frontend.
#
# Please refer to the PyTorch static quantization tutorial below to learn about
# their quantization workflow.
# https://pytorch.org/tutorials/advanced/static_quantization_tutorial.html
#
# We use this function to quantize PyTorch models.
# In short, this function takes a floating point model and converts it to uint8.
# The model is per-channel quantized.

def quantize_model(model, inp):
model.fuse_model()
model.qconfig = torch.quantization.get_default_qconfig('fbgemm')
torch.quantization.prepare(model, inplace=True)
# Dummy calibration
model(inp)
torch.quantization.convert(model, inplace=True)


##############################################################################
# Load quantization-ready, pretrained Mobilenet v2 model from torchvision
# -----------------------------------------------------------------------
# We choose mobilenet v2 because this model was trained with quantization aware
# training. Other models require a full post training calibration.
qmodel = qmobilenet.mobilenet_v2(pretrained=True).eval()

##############################################################################
# Quantize, trace and run the PyTorch Mobilenet v2 model
# ------------------------------------------------------
# The details are out of scope for this tutorial. Please refer to the tutorials
# on the PyTorch website to learn about quantization and jit.
pt_inp = torch.from_numpy(inp)
quantize_model(qmodel, pt_inp)
script_module = torch.jit.trace(qmodel, pt_inp).eval()

with torch.no_grad():
pt_result = script_module(pt_inp).numpy()

##############################################################################
# Convert quantized Mobilenet v2 to Relay-QNN using the PyTorch frontend
# ----------------------------------------------------------------------
# The PyTorch frontend has support for converting a quantized PyTorch model to
# an equivalent Relay module enriched with quantization-aware operators.
# We call this representation Relay QNN dialect.
#
# You can print the output from the frontend to see how quantized models are
# represented.
#
# You would see operators specific to quantization such as
# qnn.quantize, qnn.dequantize, qnn.requantize, and qnn.conv2d etc.
input_name = "input" # the input name can be be arbitrary for PyTorch frontend.
input_shapes = [(input_name, (1, 3, 224, 224))]
mod, params = relay.frontend.from_pytorch(script_module, input_shapes)
# print(mod) # comment in to see the QNN IR dump

##############################################################################
# Compile and run the Relay module
# --------------------------------
# Once we obtained the quantized Relay module, the rest of the workflow
# is the same as running floating point models. Please refer to other
# tutorials for more details.
#
# Under the hood, quantization specific operators are lowered to a sequence of
# standard Relay operators before compilation.
tvm_result, rt_mod = run_tvm_model(mod, params, input_name, inp, target="llvm")

##########################################################################
# Compare the output labels
# -------------------------
# We should see identical labels printed.
pt_top3_labels = np.argsort(pt_result[0])[::-1][:3]
tvm_top3_labels = np.argsort(tvm_result[0])[::-1][:3]

print("PyTorch top3 labels:", [synset[label] for label in pt_top3_labels])
print("TVM top3 labels:", [synset[label] for label in tvm_top3_labels])

###########################################################################################
# However, due to the difference in numerics, in general the raw floating point
# outputs are not expected to be identical. Here, we print how many floating point
# output values are identical out of 1000 outputs from mobilenet v2.
print("%d in 1000 raw floating outputs identical." % np.sum(tvm_result[0] == pt_result[0]))

##########################################################################
# Measure performance
# -------------------------
masahi marked this conversation as resolved.
Show resolved Hide resolved
# Here we give an example of how to measure performance of TVM compiled models.
n_repeat = 100 # should be bigger to make the measurement more accurate
ctx = tvm.cpu(0)
ftimer = rt_mod.module.time_evaluator("run", ctx, number=1,
repeat=n_repeat)
prof_res = np.array(ftimer().results) * 1e3
print("Elapsed average ms:", np.mean(prof_res))

######################################################################
# .. note::
#
# We recommend this method for the following reasons:
#
# * Measurements are done in C++, so there is no Python overhead
# * It includes several warm up runs
# * The same method can be used to profile on remote devices (android etc.).


######################################################################
# .. note::
#
# Unless the hardware has special support for fast 8 bit instructions, quantized models are
# not expected to be any faster than FP32 models. Without fast 8 bit instructions, TVM does
# quantized convolution in 16 bit, even if the model itself is 8 bit.
#
# For x86, the best performance can be achieved on CPUs with AVX512 instructions set.
# In this case, TVM utilizes the fastest available 8 bit instructions for the given target.
# This includes support for the VNNI 8 bit dot product instruction (CascadeLake or newer).
#
# Moreover, the following general tips for CPU performance equally applies:
#
# * Set the environment variable TVM_NUM_THREADS to the number of physical cores
# * Choose the best target for your hardware, such as "llvm -mcpu=skylake-avx512" or
# "llvm -mcpu=cascadelake" (more CPUs with AVX512 would come in the future)


###############################################################################
# Deploy a quantized MXNet Model
# ------------------------------
# TODO

###############################################################################
# Deploy a quantized TFLite Model
# -------------------------------
# TODO
4 changes: 2 additions & 2 deletions tutorials/frontend/from_pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,8 +88,8 @@
######################################################################
# Import the graph to Relay
# -------------------------
# Convert PyTorch graph to Relay graph.
input_name = 'input0' # only one input, set it to this name
# Convert PyTorch graph to Relay graph. The input name can be arbitrary.
input_name = 'input0'
shape_list = [(input_name, img.shape)]
mod, params = relay.frontend.from_pytorch(scripted_model,
shape_list)
Expand Down