Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[PYTORCH]Rsub, Embedded, OneHot ops support #5434

Merged
merged 1 commit into from
Apr 25, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
47 changes: 47 additions & 0 deletions python/tvm/relay/frontend/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -1462,6 +1462,50 @@ def _impl(inputs, input_types):
return _impl


def _rsub():
def _impl(inputs, input_types):
# TODO: Figure out a better way to get typing to work for tensor + scalar
type0 = input_types[0]
if isinstance(inputs[1], _expr.Expr):
type0 = input_types[1]

type1 = input_types[1]
if isinstance(inputs[0], _expr.Expr):
type1 = input_types[0]

data1 = _convert_elemwise_input(inputs[0], type0)
data0 = _convert_elemwise_input(inputs[1], type1)
alpha = _expr.const(float(inputs[2]))

return get_relay_op("subtract")(data0, alpha * data1)
return _impl


def _embedding():
def _impl(inputs, input_types):
weight = inputs[0]
indices = inputs[1]

return _op.take(weight, indices.astype('int32'), axis=0)
return _impl


def _one_hot():
def _impl(inputs, input_types):
indices = inputs[0].astype('int32')
num_classes = inputs[1]
if num_classes == -1:
msg = "Inferring the number of classes is not yet supported."
raise NotImplementedError(msg)

dtype = 'int32'
on_value = tvm.relay.const(1.0, dtype)
off_value = tvm.relay.const(0.0, dtype)

return _op.one_hot(indices, on_value, off_value, num_classes, -1, dtype)
return _impl


# Helper functions for operator implementation
def _convert_dtype_value(val):
convert_torch_dtype_map = {7:"torch.float64",
Expand Down Expand Up @@ -1667,6 +1711,9 @@ def _get_convert_map(prelude):
"aten::Float" : _Float(),
"aten::adaptive_avg_pool3d" : _adaptive_avg_pool_3d(),
"aten::adaptive_max_pool3d" : _adaptive_max_pool_3d(),
"aten::rsub" : _rsub(),
"aten::embedding" : _embedding(),
"aten::one_hot" : _one_hot(),
"aten::mm" : _matmul(),
"relay::tensor_array_stack" : _tensor_array_stack(prelude),
"aten::add" : _add(prelude),
Expand Down
53 changes: 53 additions & 0 deletions tests/python/frontend/pytorch/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -1463,6 +1463,56 @@ def forward(self, *args):
verify_model(Variance5().float().eval(), input_data=input_data)


def test_forward_rsub():
torch.set_grad_enabled(False)

class Rsub1(Module):
def forward(self, *args):
return torch.rsub(args[0], args[1])

class Rsub2(Module):
def forward(self, *args):
return torch.rsub(args[0], args[1], alpha=0.5)

d1 = torch.rand([1, 3]).float()
d2 = torch.rand([1, 3]).float()
d3 = torch.rand([1, 3]).int()
verify_model(Rsub1().float().eval(), input_data=[d1, d2])
verify_model(Rsub1().float().eval(), input_data=[d1, d3])
verify_model(Rsub2().float().eval(), input_data=[d1, d2])
verify_model(Rsub2().float().eval(), input_data=[d1, d3])


def test_forward_embedding():
torch.set_grad_enabled(False)

input_data = torch.randint(0, 10, [2, 4]).long()
verify_model(torch.nn.Embedding(10, 3).float().eval(), input_data=input_data)

input_data = torch.randint(0, 4, [2, 3, 4]).long()
verify_model(torch.nn.Embedding(4, 5, sparse=False).float().eval(), input_data=input_data)

input_data = torch.randint(0, 4, [2, 3, 4]).long()
verify_model(torch.nn.Embedding(4, 5, sparse=True).float().eval(), input_data=input_data)


def test_forward_onehot():
torch.set_grad_enabled(False)

class OneHot1(Module):
def forward(self, *args):
return torch.nn.functional.one_hot(args[0], num_classes=3)

class OneHot2(Module):
def forward(self, *args):
return torch.nn.functional.one_hot(args[0], num_classes=5)

input_data = torch.arange(0, 5) % 3
verify_model(OneHot1().float().eval(), input_data=input_data)

input_data = torch.arange(0, 5) % 4
verify_model(OneHot2().float().eval(), input_data=input_data)


def test_forward_isfinite():
torch.set_grad_enabled(False)
Expand Down Expand Up @@ -1893,6 +1943,9 @@ def forward(self, *args):
test_forward_add()
test_forward_subtract()
test_forward_multiply()
test_forward_rsub()
test_forward_onehot()
test_forward_embedding()
test_forward_reshape()
test_forward_reciprocal()
test_forward_repeat()
Expand Down