Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Onnx Pad v11 #5539

Merged
merged 1 commit into from
May 8, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 25 additions & 0 deletions python/tvm/relay/frontend/onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -557,6 +557,31 @@ def _impl_v2(cls, inputs, attr, params):
},
)(inputs, attr, params)

@classmethod
def _impl_v11(cls, inputs, attr, params):
pad_width = []
pads = infer_value_simulated(inputs[1], params).asnumpy()
if len(inputs) == 3:
value = infer_value_simulated(inputs[2], params).asnumpy().item()
else:
value = 0
attr["pad_value"] = value
dims = int(len(pads) / 2)
for i in range(dims):
pad_width.append((pads[i], pads[i+dims]))
attr['pad_width'] = pad_width
pad_mode = attr.get('mode', b'constant').decode('utf-8')
if pad_mode in ['constant', 'edge', 'reflect']:
attr['pad_mode'] = pad_mode
attr.pop('mode', None)
else:
raise tvm.error.OpAttributeInvalid(
'Value ' + pad_mode + ' in attribute "mode" is invalid for operator Pad.')

return AttrCvt('pad')(inputs[:1], attr, params)




class ParametricSoftPlus(OnnxOpConverter):
""" Operator converter for ParametricSoftPlus.
Expand Down
69 changes: 68 additions & 1 deletion tests/python/frontend/onnx/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -1278,7 +1278,63 @@ def verify_pad(indata, pads, mode='constant', value=0.0):
# tvm result
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, indata, target, ctx, outdata.shape, 'float32')
model, indata, target, ctx, outdata.shape, 'float32', opset=2)
tvm.testing.assert_allclose(outdata, tvm_out, rtol=1e-5, atol=1e-5)


def verify_pad_v11(indata, pads, mode='constant', value=0.0):
indata = np.array(indata).astype(np.float32)
# numpy expect result
len_dim = len(pads) // 2
np_pads = [(pads[i], pads[i+len_dim]) for i in range(len_dim)]
pads = np.array(pads)
# onnx graph
if mode in ['edge', 'reflect']:
inputs = [indata, pads]
outdata = np.pad(indata, pad_width=np_pads, mode=mode)
node = helper.make_node(
'Pad',
inputs=['input', 'pads'],
outputs=['output'],
mode=mode
)
graph = helper.make_graph([node],
'pad_test',
inputs=[helper.make_tensor_value_info("input",
TensorProto.FLOAT, list(indata.shape)),
helper.make_tensor_value_info("pads",
TensorProto.INT64,(len(pads),))],
initializer=[helper.make_tensor("pads", TensorProto.INT64, (len(pads),), pads)],
outputs=[helper.make_tensor_value_info("output",
TensorProto.FLOAT, list(outdata.shape))])
else:
inputs = [indata, pads, np.array([value])]
outdata = np.pad(indata, pad_width=np_pads,
mode='constant', constant_values=value)
node = helper.make_node(
'Pad',
inputs=['input', 'pads', 'constant_value'],
outputs=['output'],
mode='constant'
)
graph = helper.make_graph([node],
'pad_test',
inputs=[helper.make_tensor_value_info("input",
TensorProto.FLOAT, list(indata.shape)),
helper.make_tensor_value_info("pads",
TensorProto.INT64,(len(pads),)),
helper.make_tensor_value_info("constant_value",
TensorProto.INT64,(1,)),
],
initializer=[helper.make_tensor("pads", TensorProto.INT64, (len(pads),), pads),
helper.make_tensor("constant_value", TensorProto.FLOAT, (1,), [value])],
outputs=[helper.make_tensor_value_info("output",
TensorProto.FLOAT, list(outdata.shape))])
model = helper.make_model(graph, producer_name='pad_test')
# tvm result
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, inputs, target, ctx, outdata.shape, 'float32', opset=11)
tvm.testing.assert_allclose(outdata, tvm_out, rtol=1e-5, atol=1e-5)


Expand All @@ -1294,6 +1350,17 @@ def test_pad():
verify_pad(np.random.randn(1, 3, 4, 5).astype(
np.float32), [0, 0, 1, 1, 0, 0, 1, 1], 'reflect')

verify_pad_v11(np.random.randn(2, 2).astype(
np.float32), [0, 1, 0, 0], 'constant', 0.0)
verify_pad_v11(np.random.randn(2, 3).astype(
np.float32), [1, 0, 0, 1], 'constant', 0.0)
verify_pad_v11(np.random.randn(3, 2).astype(
np.float32), [0, 0, 1, 0], 'constant', 5.0)
verify_pad_v11(np.random.randn(1, 3, 4, 5).astype(
np.float32), [0, 0, 1, 1, 0, 0, 1, 1], 'edge')
verify_pad_v11(np.random.randn(1, 3, 4, 5).astype(
np.float32), [0, 0, 1, 1, 0, 0, 1, 1], 'reflect')


def verify_reduce_x(name, indata, axis, keepdims):
indata = np.array(indata).astype(np.float32)
Expand Down