Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ONNX]LpPool Support added #5696

Merged
merged 1 commit into from
May 29, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 52 additions & 0 deletions python/tvm/relay/frontend/onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -502,6 +502,57 @@ class MaxPool(Pool):
"""
name = 'max_pool'

class LpPool(OnnxOpConverter):
""" A helper class for lppool op converters.
"""
@classmethod
def _impl_v1(cls, inputs, attr, params):
input_shape = infer_shape(inputs[0])
dtype = infer_type(inputs[0]).checked_type.dtype

if 'auto_pad' in attr:
attr['auto_pad'] = attr['auto_pad'].decode('utf-8')
if attr['auto_pad'] in ('SAME_UPPER', 'SAME_LOWER'):
pad_tuple = []
for axis in range(len(input_shape) - 2):
axis_shape = input_shape[2 + axis]
stride = attr['strides'][axis]
kernel = attr['kernel_shape'][axis]
pad = get_pad_pair(axis_shape, kernel, stride)
pad_tuple.append(pad)
pad_tuple = tuple([val for pair in zip(*pad_tuple) for val in pair])
attr['pads'] = pad_tuple
elif attr['auto_pad'] == 'VALID':
attr['pads'] = 0
elif attr['auto_pad'] == 'NOTSET':
pass
else:
msg = 'Value {} in attribute "auto_pad" of operator {} is invalid.'
raise tvm.error.OpAttributeInvalid(msg.format(attr['auto_pad'], "LpPool"))
attr.pop("auto_pad")

if 'storage_order' in attr:
attr['layout'] = onnx_storage_order2layout(attr['storage_order'],
dims=(len(input_shape) - 2))
else:
attr['layout'] = onnx_default_layout(dims=(len(input_shape) - 2))

p = _expr.const(attr['p'], dtype)
reci_p = _expr.const(1.0 / attr['p'], dtype)
inputs[0] = _op.power(inputs[0], p)

out = AttrCvt(op_name=dimension_picker("avg_pool"),
transforms={
'kernel_shape': 'pool_size',
'pads': ('padding', 0)
},
extras={'count_include_pad': True},
ignores=['p'],
custom_check=dimension_constraint())(inputs, attr, params)
kernels = attr['kernel_shape']
out = _op.abs(out) * _expr.const(np.prod(kernels).astype(dtype))
return _op.power(out, reci_p)


class Mul(Elemwise):
""" Operator converter for Multiply.
Expand Down Expand Up @@ -1660,6 +1711,7 @@ def _get_convert_map(opset):

# defs/nn
'AveragePool': AveragePool.get_converter(opset),
'LpPool': LpPool.get_converter(opset),
'MaxPool': MaxPool.get_converter(opset),
'Conv': Conv.get_converter(opset),
'ConvTranspose': ConvTranspose.get_converter(opset),
Expand Down
71 changes: 71 additions & 0 deletions tests/python/frontend/onnx/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -2304,6 +2304,76 @@ def test_pooling():
auto_pad='SAME_UPPER')


def verify_lppool(x_shape, kernel_shape, p, strides, pads, out_shape, auto_pad="NOTSET"):
x_np = np.random.uniform(size=x_shape).astype('float32')

if pads is None:
pool_node = helper.make_node("LpPool",
inputs=["x"],
outputs=["y"],
kernel_shape=kernel_shape,
p = p,
auto_pad=auto_pad,
strides=strides)
else:
pool_node = helper.make_node("LpPool",
inputs=["x"],
outputs=["y"],
kernel_shape=kernel_shape,
p = p,
pads=pads,
strides=strides)

graph = helper.make_graph([pool_node],
"lppool_test",
inputs=[helper.make_tensor_value_info("x",
TensorProto.FLOAT, list(x_shape))],
outputs=[helper.make_tensor_value_info("y",
TensorProto.FLOAT, list(out_shape))])

model = helper.make_model(graph, producer_name='lppool_test')

for target, ctx in ctx_list():
onnx_out = get_onnxruntime_output(model, x_np, 'float32')
tvm_out = get_tvm_output(
model, [x_np], target, ctx, out_shape)
tvm.testing.assert_allclose(onnx_out, tvm_out, rtol=1e-5, atol=1e-5)


def test_lppool():
# Pool1D
verify_lppool(x_shape=[1, 1, 32], kernel_shape=[3], p=2, strides=[1], pads=[1, 1],
out_shape=[1, 1, 32])

# Pool2D
verify_lppool(x_shape=[1, 1, 32, 32], kernel_shape=[3, 3], p=2, strides=[1, 1],
pads=[1, 1, 1, 1], out_shape=[1, 1, 32, 32])

# Pool1D with stride
verify_lppool(x_shape=[1, 1, 32], kernel_shape=[3], p=2, strides=[2], pads=[1, 1],
out_shape=[1, 1, 16])

# Pool2D with stride
verify_lppool(x_shape=[1, 1, 32, 32], kernel_shape=[3, 3], p=2, strides=[2, 2],
pads=[1, 1, 1, 1], out_shape=[1, 1, 16, 16])

# Pool1D with stride and autopadding
verify_lppool(x_shape=[1, 1, 32], kernel_shape=[3], p=2, strides=[2], pads=None,
out_shape=[1, 1, 16], auto_pad='SAME_UPPER')

# Pool2D with stride and autopadding
verify_lppool(x_shape=[1, 1, 32, 32], kernel_shape=[3, 3], p=2, strides=[2, 2],
pads=None, out_shape=[1, 1, 16, 16], auto_pad='SAME_UPPER')

# Pool3D with stride
verify_lppool(x_shape=[1, 1, 32, 32, 32], kernel_shape=[3, 3, 3], p=2, strides=[2, 2, 2],
pads=[1, 1, 1, 1, 1, 1], out_shape=[1, 1, 16, 16, 16])

# Pool3D with stride and autopadding
verify_lppool(x_shape=[1, 1, 32, 32, 32], kernel_shape=[3, 3, 3], p=2, strides=[2, 2, 2],
pads=None, out_shape=[1, 1, 16, 16, 16], auto_pad='SAME_UPPER')


def verify_lstm(seq_length,
batch_size,
input_size,
Expand Down Expand Up @@ -2722,6 +2792,7 @@ def verify_roi_align(input_dims, num_roi, output_height, output_width, sampling_
test_convtranspose()
test_unsqueeze_constant()
test_pooling()
test_lppool()
test_lstm()
test_resize()
test_nonzero()
Expand Down