Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[RELAY][OP] roi_pool operator alter layout #6516

Merged
merged 1 commit into from
Nov 8, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 43 additions & 1 deletion python/tvm/relay/op/vision/_rcnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,11 +69,53 @@ def convert_roi_align(attrs, inputs, tinfos, desired_layouts):
raise ValueError("Layout %s is not yet supported." % desired_data_layout)


@reg.register_convert_op_layout("vision.roi_pool")
def convert_roi_pool(attrs, inputs, tinfos, desired_layouts):
"""Convert Layout pass registration for roi_pool op.

Parameters
----------
attrs : tvm.ir.Attrs
Attributes of current roi_pool
inputs : list of tvm.relay.Expr
The args of the Relay expr to be legalized
tinfos : list of types
List of input and output types
desired_layouts : list of layout strings
List of layouts defining our desired
layout for the data and rois inputs respectively.

Returns
-------
result : tvm.relay.Expr
The transformed expr
"""
# pylint: disable=import-outside-toplevel
from tvm import relay

data, rois = inputs
new_attrs = dict(attrs)
assert (
len(desired_layouts) == 2
), "A desired layout is expected for both of vision.roi_pool's inputs"

desired_data_layout, desired_rois_layout = map(str, desired_layouts)
assert desired_data_layout != "default", "Data layout cannot be default"
assert desired_rois_layout == "default", "Rois layout must be default"

new_attrs["layout"] = desired_data_layout
# rois layout not change
if desired_data_layout in ["NCHW", "NHWC"]:
return relay.vision.roi_pool(data, rois, **new_attrs)

raise ValueError("Layout %s is not yet supported." % desired_data_layout)
Beya2019 marked this conversation as resolved.
Show resolved Hide resolved


# roi_pool
@reg.register_compute("vision.roi_pool")
def compute_roi_pool(attrs, inputs, _):
"""Compute definition of roi_pool"""
assert attrs.layout == "NCHW"
assert attrs.layout == "NCHW", "only support nchw for now"
return [
topi.vision.rcnn.roi_pool_nchw(
inputs[0],
Expand Down
30 changes: 26 additions & 4 deletions src/relay/op/vision/rcnn_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -119,14 +119,35 @@ bool ROIPoolRel(const Array<Type>& types, int num_inputs, const Attrs& attrs,
ICHECK(roi_pool_attrs);
ICHECK_EQ(dshape.size(), 4) << "Input data should be 4-D.";
ICHECK_EQ(rshape.size(), 2) << "Input rois should be 2-D.";
ICHECK_EQ(roi_pool_attrs->layout, "NCHW") << "ROI Pool only supports NCHW layout";
// assign output type
std::vector<IndexExpr> oshape(
{rshape[0], dshape[1], roi_pool_attrs->pooled_size[0], roi_pool_attrs->pooled_size[1]});
std::vector<IndexExpr> oshape;
if (roi_pool_attrs->layout == "NCHW") {
oshape = {rshape[0], dshape[1], roi_pool_attrs->pooled_size[0], roi_pool_attrs->pooled_size[1]};
} else if (roi_pool_attrs->layout == "NHWC") {
oshape = {rshape[0], roi_pool_attrs->pooled_size[0], roi_pool_attrs->pooled_size[1], dshape[3]};
} else {
LOG(FATAL) << "vision.roi_pool does not support " << roi_pool_attrs->layout << " layout";
}

reporter->Assign(types[2], TensorType(oshape, data->dtype));
return true;
}

template <typename T>
Array<Array<Layout> > ROIPoolInferCorrectLayout(const Attrs& attrs,
const Array<Layout>& new_in_layouts,
const Array<Layout>& old_in_layouts,
const Array<tvm::relay::Type>& old_in_types) {
// NOTE: Discard "const" qualifier here.
T* params = const_cast<T*>(attrs.as<T>());
Layout data_layout = params->layout;

// Layout inference needs to define the layout for all inputs and output data layouts.
// For roi_pool, the second inputs is 2-D tensor with shape [num_roi, 5].
// So, we set the layout as "N5".
return Array<Array<Layout> >{{data_layout, Layout("N5")}, {data_layout}};
}

Expr MakeROIPool(Expr data, Expr rois, Array<IndexExpr> pooled_size, double spatial_scale,
String layout) {
auto attrs = make_object<ROIPoolAttrs>();
Expand All @@ -153,7 +174,8 @@ RELAY_REGISTER_OP("vision.roi_pool")
.add_argument("data", "Tensor", "The input tensor.")
.add_argument("rois", "Tensor", "The input rois")
.set_support_level(5)
.add_type_rel("ROIPool", ROIPoolRel);
.add_type_rel("ROIPool", ROIPoolRel)
.set_attr<FInferCorrectLayout>("FInferCorrectLayout", ROIPoolInferCorrectLayout<ROIPoolAttrs>);

TVM_REGISTER_NODE_TYPE(ProposalAttrs);

Expand Down
54 changes: 54 additions & 0 deletions tests/python/relay/test_pass_convert_op_layout.py
Original file line number Diff line number Diff line change
Expand Up @@ -966,6 +966,59 @@ def expected():
assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a)


def test_conv_roi_pool_convert_layout():
def before():
x = relay.var("x", shape=(1, 64, 56, 56))
weight1 = relay.var("weight1", shape=(64, 64, 3, 3))
y = relay.nn.conv2d(
x,
weight1,
channels=64,
kernel_size=(3, 3),
padding=(1, 1),
data_layout="NCHW",
kernel_layout="OIHW",
)
rois = relay.var("rois", shape=(32, 5))
y = relay.vision.roi_pool(
y, rois, pooled_size=(14, 14), spatial_scale=0.0625, layout="NCHW"
)
y = relay.Function(analysis.free_vars(y), y)
return y

def expected():
x = relay.var("x", shape=(1, 64, 56, 56))
weight1 = relay.var("weight1", shape=(64, 64, 3, 3))
x = relay.layout_transform(x, "NCHW", "NHWC")
weight1 = relay.layout_transform(weight1, "OIHW", "HWIO")
y = relay.nn.conv2d(
x,
weight1,
channels=64,
kernel_size=(3, 3),
padding=(1, 1),
data_layout="NHWC",
kernel_layout="HWIO",
)
rois = relay.var("rois", shape=(32, 5))
y = relay.vision.roi_pool(
y, rois, pooled_size=(14, 14), spatial_scale=0.0625, layout="NHWC"
)
ret = relay.layout_transform(y, "NHWC", "NCHW")
y = relay.Function(analysis.free_vars(ret), ret)
return y

a = before()
desired_layouts = {
"nn.conv2d": ["NHWC", "HWIO"],
"vision.roi_pool": ["NHWC", "default"],
}
a = run_opt_pass(a, transform.ConvertLayout(desired_layouts))
b = run_opt_pass(expected(), transform.InferType())

assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a)


def test_default_keyword():
""" Check that the default keyword selects correct TVM default layout. """

Expand Down Expand Up @@ -1253,6 +1306,7 @@ def expected():
test_conv_convert_kernel_layout()
test_conv_transpose_convert_layout()
test_conv_roi_align_convert_layout()
test_conv_roi_pool_convert_layout()
test_conv_strided_slice_convert_layout()
test_default_keyword()
test_different_ops_convert_layout()
Expand Down