Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Frontend][TensorFlow] Support NonMaxSuppressionV5 #6933

Merged
merged 1 commit into from
Nov 17, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 12 additions & 1 deletion python/tvm/relay/frontend/tensorflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -665,7 +665,7 @@ def _impl(inputs, attr, params, mod):
return _impl


def _nms():
def _nms(return_scores=False):
def _impl(inputs, attr, params, mod):
# Get parameter values
try:
Expand Down Expand Up @@ -724,6 +724,16 @@ def _impl(inputs, attr, params, mod):
ret = get_relay_op("strided_slice")(
data_slice, begin=_expr.const([0]), end=size, slice_mode="size"
)

# NonMaxSuppressionV5 returns scores. pad_output is always False for NMSv5.
if return_scores:
if "soft_nms_sigma" in attr and attr["soft_nms_sigma"] != 0.0:
raise tvm.error.OpAttributeUnImplemented(
"soft_nms_sigma for NonMaxSuppressionV5 is not supported"
)
ret_scores = _op.take(inputs[1], ret, axis=0)
return _expr.TupleWrapper(_expr.Tuple([ret, ret_scores, size]), 3)

return ret

return _impl
Expand Down Expand Up @@ -2354,6 +2364,7 @@ def _impl(inputs, attr, params, mod):
"NonMaxSuppressionV2": _nms(),
"NonMaxSuppressionV3": _nms(),
"NonMaxSuppressionV4": _nms(),
"NonMaxSuppressionV5": _nms(True),
"NoOp": _no_op(),
"NotEqual": _broadcast("not_equal"),
"OneHot": _one_hot(),
Expand Down
30 changes: 28 additions & 2 deletions tests/python/frontend/tensorflow/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -2647,9 +2647,35 @@ def _test_forward_nms_v4(
)


def _test_forward_nms_v5(
bx_shape, score_shape, iou_threshold, score_threshold, out_size, dtype="float32"
):
boxes = np.random.uniform(0, 10, size=bx_shape).astype(dtype)
scores = np.random.uniform(size=score_shape).astype(dtype)
max_output_size = np.int32(out_size)
tf.reset_default_graph()
in_data_1 = tf.placeholder(dtype, boxes.shape, name="in_data_1")
in_data_2 = tf.placeholder(dtype, scores.shape, name="in_data_2")
in_data_3 = tf.placeholder(tf.int32, name="in_data_3")
tf.image.non_max_suppression_with_scores(
boxes=in_data_1,
scores=in_data_2,
max_output_size=in_data_3,
iou_threshold=iou_threshold,
score_threshold=score_threshold,
name="nms",
)
compare_tf_with_tvm(
[boxes, scores, max_output_size],
["in_data_1:0", "in_data_2:0", "in_data_3:0"],
["nms/NonMaxSuppressionV5:0", "nms/NonMaxSuppressionV5:1"],
mode="vm",
)


def test_forward_nms():
""" NonMaxSuppressionV3,4 """
for _test_forward_nms in [_test_forward_nms_v3]:
""" NonMaxSuppressionV3,5 """
for _test_forward_nms in [_test_forward_nms_v3, _test_forward_nms_v5]:
_test_forward_nms((5, 4), (5,), 0.7, 0.5, 5)
_test_forward_nms((20, 4), (20,), 0.5, 0.6, 10)
_test_forward_nms((1000, 4), (1000,), 0.3, 0.7, 1000)
Expand Down