Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[TFLite] Reshape - support different qnn params for input and output #7159

Merged
merged 1 commit into from
Dec 29, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 29 additions & 1 deletion python/tvm/relay/frontend/tflite.py
Original file line number Diff line number Diff line change
Expand Up @@ -511,13 +511,30 @@ def convert_reshape(self, op):
in_expr = self.get_expr(input_tensor_idx)

# If the tensors are quantized, ensure that input/output qnn params are same.
if input_tensor.qnn_params:

input_tensor_type_str = self.get_tensor_type_str(input_tensor.tensor.Type())
if input_tensor.qnn_params and input_tensor_type_str == "int8":
# TFLite 2.x quantization spec requires qnn params to be same and dtype to be int8.
# For TFLite 1.x, dtype can be uint8 and qnn params can be different
output_tensor = output_tensors[0]
assert self.has_same_qnn_params(
input_tensor, output_tensor
), "TFLite reshape requires input and output scale and zero points to be equal"

out = _op.reshape(in_expr, newshape=target_shape)
if input_tensor.qnn_params and input_tensor_type_str == "uint8":
output_tensor = output_tensors[0]
if not self.has_same_qnn_params(input_tensor, output_tensor):
output_tensor_type_str = self.get_tensor_type_str(output_tensor.tensor.Type())
out = _qnn.op.requantize(
out,
input_scale=input_tensor.qnn_params["scale"],
input_zero_point=input_tensor.qnn_params["zero_point"],
output_scale=output_tensor.qnn_params["scale"],
output_zero_point=output_tensor.qnn_params["zero_point"],
out_dtype=output_tensor_type_str,
)

return out

def _convert_resize(self, method, op):
Expand Down Expand Up @@ -2527,6 +2544,17 @@ def convert_pack(self, op):
output_tensors = self.get_output_tensors(op)
assert len(output_tensors) == 1, "output tensors length should be 1"

if input_tensors[0].qnn_params:
output_tensor = output_tensors[0]
assert self.has_same_qnn_params(
input_tensors[0], output_tensor
), "TFLite pack requires input and output scale and zero points to be equal"

for input_tensor in input_tensors:
assert self.has_same_qnn_params(
input_tensors[0], input_tensor
), "TFLite pack requires all input tensors to have same scale and zero point"

assert op.BuiltinOptionsType() == BuiltinOptions.PackOptions
op_options = op.BuiltinOptions()
pack_options = PackOptions()
Expand Down
131 changes: 101 additions & 30 deletions tests/python/frontend/tflite/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -1251,30 +1251,61 @@ def test_forward_transpose_conv():
# -------


def _test_reshape(data, out_shape, wrap_shape):
def _test_reshape(data, out_shape, wrap_shape, quantized=False):
""" One iteration of reshape operation with given data and out shape """
with tf.Graph().as_default():
in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype)
if quantized:
with tf.Graph().as_default():
in_data = array_ops.placeholder(shape=data.shape, dtype="float32", name="in")
inq_data = tf.quantization.fake_quant_with_min_max_args(
in_data, min=-100, max=100, name="inq_0"
)

out_shape = out_shape if not wrap_shape else np.array(out_shape, dtype=np.int32)
input_range = {"inq_0": (-100, 100)}
out_shape = out_shape if not wrap_shape else np.array(out_shape, dtype=np.int32)

in_shape = (
out_shape
if not wrap_shape
else array_ops.placeholder(
shape=out_shape.shape, dtype=out_shape.dtype, name="Newshape"
in_shape = (
out_shape
if not wrap_shape
else array_ops.placeholder(
shape=out_shape.shape, dtype=out_shape.dtype, name="Newshape"
)
)
)

out = array_ops.reshape(in_data, in_shape)
out = array_ops.reshape(inq_data, in_shape)
out = tf.quantization.fake_quant_with_min_max_args(out, min=-200, max=200, name="out")
compare_tflite_with_tvm(
[data, out_shape] if wrap_shape else [data],
["inq_0:0", "Newshape:0"] if wrap_shape else ["inq_0:0"],
[inq_data, in_shape] if wrap_shape else [inq_data],
[out],
quantized=True,
input_range=input_range,
mode="vm",
)
else:
# Test with tensor and constant
with tf.Graph().as_default():
in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype)

out_shape = out_shape if not wrap_shape else np.array(out_shape, dtype=np.int32)

compare_tflite_with_tvm(
[data, out_shape] if wrap_shape else [data],
["Placeholder:0", "Newshape:0"] if wrap_shape else ["Placeholder:0"],
[in_data, in_shape] if wrap_shape else [in_data],
[out],
mode="vm",
)
in_shape = (
out_shape
if not wrap_shape
else array_ops.placeholder(
shape=out_shape.shape, dtype=out_shape.dtype, name="Newshape"
)
)

out = array_ops.reshape(in_data, in_shape)

compare_tflite_with_tvm(
[data, out_shape] if wrap_shape else [data],
["Placeholder:0", "Newshape:0"] if wrap_shape else ["Placeholder:0"],
[in_data, in_shape] if wrap_shape else [in_data],
[out],
mode="vm",
)


def test_forward_reshape():
Expand All @@ -1284,6 +1315,9 @@ def test_forward_reshape():
_test_reshape(np.arange(6), [3, -1], wrap)
_test_reshape(np.arange(6), [-1], wrap)

_test_reshape(np.arange(6, dtype=np.uint8), [2, 3], False, True)
_test_reshape(np.arange(6, dtype=np.uint8), [-1, 2], False, True)


#######################################################################
# Resize
Expand Down Expand Up @@ -2750,25 +2784,51 @@ def test_forward_one_hot():
# ----


def _test_pack(data, is_var, axis):
def _test_pack(data, is_var, axis, quantized=False):
""" One iteration of pack """

assert len(data) >= 1
assert len(data) == len(is_var)
if quantized:
with tf.Graph().as_default():
in_data = [
array_ops.placeholder(shape=d.shape, dtype="float32", name="in_" + str(idx))
if is_var[idx]
else constant_op.constant(
d, shape=d.shape, dtype="float32", name="in_constant_" + str(idx)
)
for idx, d in enumerate(data)
]
inq_data = [
tf.quantization.fake_quant_with_min_max_args(
i_data, min=-100, max=100, name="inq_{}".format(idx)
)
for idx, i_data in enumerate(in_data)
]
input_range = {}
for i in range(len(data)):
input_range["inq_{}".format(i)] = (-100, 100)

with tf.Graph().as_default():
in_data = [
array_ops.placeholder(shape=d.shape, dtype=d.dtype, name="in_" + str(idx))
if is_var[idx]
else constant_op.constant(
d, shape=d.shape, dtype=d.dtype, name="in_constant_" + str(idx)
out = array_ops.pack(inq_data, axis=axis)
out = tf.quantization.fake_quant_with_min_max_args(out, min=-100, max=100, name="out")
name = ["inq_{}:0".format(idx) for idx in range(len(data))]
compare_tflite_with_tvm(
data, name, inq_data, [out], quantized=True, input_range=input_range
)
for idx, d in enumerate(data)
]
else:
with tf.Graph().as_default():
in_data = [
array_ops.placeholder(shape=d.shape, dtype=d.dtype, name="in_" + str(idx))
if is_var[idx]
else constant_op.constant(
d, shape=d.shape, dtype=d.dtype, name="in_constant_" + str(idx)
)
for idx, d in enumerate(data)
]

out = array_ops.pack(in_data, axis=axis)
name = [_.name for _ in in_data]
compare_tflite_with_tvm(data, name, in_data, [out], experimental_new_converter=True)
out = array_ops.pack(in_data, axis=axis)
name = [_.name for _ in in_data]
compare_tflite_with_tvm(data, name, in_data, [out], experimental_new_converter=True)


def test_forward_pack():
Expand All @@ -2791,6 +2851,17 @@ def test_forward_pack():
1,
)

_test_pack(
[
np.arange(6, dtype=np.uint8).reshape((2, 1, 1, 3)),
np.arange(6, dtype=np.uint8).reshape((2, 1, 1, 3)),
np.arange(6, dtype=np.uint8).reshape((2, 1, 1, 3)),
],
[True, True, True],
1,
quantized=True,
)


#######################################################################
# Unpack
Expand Down