Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ONNX] Enable GPU in ONNX importer tests #7438

Merged
merged 17 commits into from
Mar 30, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 15 additions & 1 deletion src/target/source/codegen_c.cc
Original file line number Diff line number Diff line change
Expand Up @@ -525,7 +525,21 @@ void CodeGenC::VisitExpr_(const DivNode* op, std::ostream& os) { // NOLINT(*)
PrintBinaryExpr(op, "/", os, this);
}
void CodeGenC::VisitExpr_(const ModNode* op, std::ostream& os) { // NOLINT(*)
PrintBinaryExpr(op, "%", os, this);
if (op->dtype.is_int() || op->dtype.is_uint()) {
PrintBinaryExpr(op, "%", os, this);
} else {
ICHECK(op->dtype.is_float()) << "Expected floating point or integer dtype in Mod, but got "
<< op->dtype;
if (op->dtype.bits() == 32) {
PrintBinaryExpr(op, "fmodf", os, this);
} else if (op->dtype.bits() == 64) {
PrintBinaryExpr(op, "fmod", os, this);
} else {
ICHECK(false)
<< "Non single or double precision floating point in Mod, expected 32 or 64 bits but got "
<< op->dtype.bits() << " bits.";
}
}
}
void CodeGenC::VisitExpr_(const MinNode* op, std::ostream& os) { // NOLINT(*)
PrintBinaryExpr(op, "min", os, this);
Expand Down
38 changes: 14 additions & 24 deletions tests/python/frontend/onnx/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -276,8 +276,7 @@ def test_double_reshape():
tvm.testing.assert_allclose(ref_shape, tvm_out.shape)


# TODO(mbrookhart): enable once VM supports heterogenous execution
# @tvm.testing.uses_gpu
@tvm.testing.uses_gpu
def test_expand():
def _test_expand(name, data, shape, ref_data, dtype="int32"):
shape_array = np.array(shape)
Expand Down Expand Up @@ -757,8 +756,7 @@ def add_noop_to_input_attr(attr_name, attr):
verify_with_ort_with_inputs(model, [indata], opset=10, freeze_params=True, use_vm=True)


# TODO(mbrookhart): enable once VM supports heterogenous execution
# @tvm.testing.uses_gpu
@tvm.testing.uses_gpu
def test_slice():
x = np.random.randn(20, 10, 5).astype(np.float32)
_test_slice_iteration_v1(x, x[0:3, 0:10], starts=(0, 0), ends=(3, 10), axes=(0, 1))
Expand Down Expand Up @@ -978,8 +976,7 @@ def test_gather_nd():
verify_gather_nd([2, 2, 2], [[[0, 1]], [[1, 0]]], [2, 1, 2])


# TODO(mbrookhart): enable once VM supports heterogenous execution
# @tvm.testing.uses_gpu
@tvm.testing.uses_gpu
def test_onehot():
indices_shape = [10]
indices_array = np.random.randint(low=0, high=9, size=indices_shape, dtype="int32")
Expand Down Expand Up @@ -1091,7 +1088,7 @@ def verify_batch_matmul(a_shape, b_shape, out_shape, target, dev):
verify_with_ort_with_inputs(model, [a_array, b_array], use_vm=True, targets=[target])


# TODO(mbrookhart): enable cuda once VM supports heterogenous execution
# TODO(mbrookhart, electriclilies): Add CUDA as a target once batch matmul is fixed
@tvm.testing.parametrize_targets("llvm")
def test_batch_matmul(target, dev):
verify_batch_matmul((2, 3, 4, 3), (2, 3, 3, 4), (2, 3, 4, 4), target, dev)
Expand Down Expand Up @@ -1146,7 +1143,7 @@ def verify_model(ex, a_shape, b_shape):
verify_model(ex, [a * 3 for a in a_shape], [b * 3 for b in b_shape])


# TODO(mbrookhart): enable cuda once VM supports heterogenous execution
# TODO(mbrookhart, electriclilies): Add CUDA as a target once batch matmul is fixed
@tvm.testing.parametrize_targets("llvm")
def test_batch_matmul_dynamic_model(target, dev):
verify_simple_dynamic_model((2, 3, 4, 3), (2, 3, 3, 4), target, dev)
Expand Down Expand Up @@ -1319,8 +1316,7 @@ def verify_upsample3d_trilinear():
tvm.testing.assert_allclose(out_array, tvm_out, rtol=1e-5, atol=1e-5)


# TODO(mbrookhart): enable once VM supports heterogenous execution
# @tvm.testing.uses_gpu
@tvm.testing.uses_gpu
def test_upsample():
verify_upsample_nearest()
verify_upsample_bilinear()
Expand Down Expand Up @@ -1497,7 +1493,8 @@ def verify_argreduce(input_dim, op_name, axis=None, keepdims=None):
verify_with_ort_with_inputs(model, [a_np1])


@tvm.testing.uses_gpu
# TODO (mbrookhart, electriclilies) Fix argmin on GPU and enable this test
# @tvm.testing.uses_gpu
def test_forward_arg_min_max():
"""Verify argmin and argmax"""
verify_argreduce([3, 4, 4], "ArgMin")
Expand Down Expand Up @@ -1540,8 +1537,7 @@ def verify_constantofshape(input_dim, value, dtype):
verify_with_ort_with_inputs(model, [input_np], use_vm=True)


# TODO(mbrookhart): enable once VM supports heterogenous execution
# @tvm.testing.uses_gpu
@tvm.testing.uses_gpu
def test_constantofshape():
verify_constantofshape((2, 3, 4, 5), 10, "float32")
verify_constantofshape((3, 3), 0, "int32")
Expand Down Expand Up @@ -1627,8 +1623,7 @@ def verify_pad_v11(indata, pads, mode="constant", value=0.0):
verify_with_ort_with_inputs(model, inputs, opset=11, use_vm=True)


# TODO(mbrookhart): enable once VM supports heterogenous execution
# @tvm.testing.uses_gpu
@tvm.testing.uses_gpu
def test_pad():
verify_pad(np.random.randn(2, 2).astype(np.float32), [0, 1, 0, 0], "constant", 0.0)
verify_pad(np.random.randn(2, 3).astype(np.float32), [1, 0, 0, 1], "constant", 0.0)
Expand Down Expand Up @@ -2120,8 +2115,7 @@ def verify_tile_v6(indata, repeats, outdata):
verify_with_ort_with_inputs(model, [indata, repeats], use_vm=True, opset=6)


# TODO(mbrookhart): enable once VM supports heterogenous execution
# @tvm.testing.uses_gpu
@tvm.testing.uses_gpu
def test_tile():
x = np.random.rand(2, 3, 4, 5).astype(np.float32)
repeats = np.random.randint(low=1, high=10, size=(np.ndim(x),)).astype(np.int64)
Expand Down Expand Up @@ -2293,8 +2287,7 @@ def verify_batch_norm(in_shape):
verify_batch_norm([16, 16, 10, 10])


# TODO(mbrookhart): enable once VM supports heterogenous execution
# @tvm.testing.uses_gpu
@tvm.testing.uses_gpu
def test_batch_norm_dynamic_subgraph():
def verify_batch_norm_dynamic_subgraph(in_shape, o_shape):

Expand Down Expand Up @@ -3312,8 +3305,7 @@ def test_gru():
)


# TODO(mbrookhart): enable once VM supports heterogenous execution
# @tvm.testing.uses_gpu
@tvm.testing.uses_gpu
def test_resize():
def verify(ishape, oshape, scales, mode, coord_trans):
nodes = [
Expand Down Expand Up @@ -3420,9 +3412,7 @@ def verify_nonzero(indata, outdata, dtype):

model = helper.make_model(graph, producer_name="nonzero_test")

verify_with_ort_with_inputs(
model, [indata], targets=["llvm"], dtype="int64", use_vm=True, opset=9
)
verify_with_ort_with_inputs(model, [indata], dtype="int64", use_vm=True, opset=9)

input_data = np.array([[1, 0], [1, 1]], dtype=np.int64)
result = np.array((np.nonzero(input_data))) # expected output [[0, 1, 1], [0, 0, 1]]
Expand Down
5 changes: 4 additions & 1 deletion tests/scripts/task_python_frontend.sh
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,10 @@ echo "Running relay MXNet frontend test..."
run_pytest cython python-frontend-mxnet tests/python/frontend/mxnet

echo "Running relay ONNX frontend test..."
run_pytest cython python-frontend-onnx tests/python/frontend/onnx
# Enable tvm.testing decorators in the ONNX importer test (not enabling in the other tests because we
# they do not consistently use the decorators to indicate that tests should run on GPU)
# In the future, we should enable tvm.testing decorators for all the test files.
PYTEST_ADDOPTS="-m gpu $PYTEST_ADDOPTS" run_pytest cython python-frontend-onnx tests/python/frontend/onnx

echo "Running relay CoreML frontend test..."
run_pytest cython python-frontend-coreml tests/python/frontend/coreml
Expand Down