Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Frontend] TF V2 sparse.todense() test added #7473

Merged
merged 2 commits into from
Feb 25, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
175 changes: 98 additions & 77 deletions tests/python/frontend/tensorflow/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -1915,6 +1915,104 @@ def test_forward_sparse_fill_empty_rows(
)


#######################################################################
# tensorflow.compat.v1.sparse_to_dense
# ---------------
def _test_sparse_to_dense(sparse_indices, sparse_values, default_value, output_shape):
with tf.Graph().as_default():
indices = tf.placeholder(
shape=sparse_indices.shape, dtype=str(sparse_indices.dtype), name="indices"
)
values = tf.placeholder(
shape=sparse_values.shape, dtype=str(sparse_values.dtype), name="values"
)
oshape = tf.constant(output_shape, shape=output_shape.shape, dtype=str(output_shape.dtype))

if default_value == None:
output = tf.sparse_to_dense(indices, oshape, values)
compare_tf_with_tvm(
[sparse_indices, sparse_values], ["indices:0", "values:0"], output.name
)
else:
dv = tf.placeholder(shape=(), dtype=str(default_value.dtype), name="default_value")
output = tf.sparse_to_dense(indices, oshape, values, dv)
compare_tf_with_tvm(
[sparse_indices, sparse_values, default_value],
["indices:0", "values:0", "default_value:0"],
output.name,
)


def test_forward_sparse_to_dense():
# scalar
_test_sparse_to_dense(
sparse_indices=np.int32(1),
sparse_values=np.int32(3),
default_value=np.int32(0),
output_shape=np.array([5]).astype("int32"),
)

# vector
_test_sparse_to_dense(
sparse_indices=np.array([0, 1, 4]).astype("int32"),
sparse_values=np.array([3, 3, 3]).astype("int32"),
default_value=np.int32(0),
output_shape=np.array([5]).astype("int32"),
)

# vector nXd
_test_sparse_to_dense(
sparse_indices=np.array([[0, 0], [1, 2]]).astype("int32"),
sparse_values=np.array([1, 2]).astype("int32"),
default_value=np.int32(0),
output_shape=np.array([3, 4]).astype("int32"),
)

_test_sparse_to_dense(
sparse_indices=np.array([[0, 0, 0], [1, 2, 3]]).astype("int32"),
sparse_values=np.array([1, 2]).astype("int32"),
default_value=np.int32(4),
output_shape=np.array([2, 3, 4]).astype("int32"),
)

# floats
_test_sparse_to_dense(
sparse_indices=np.array([0, 1, 4]).astype("int32"),
sparse_values=np.array([3.1, 3.1, 3.1]).astype("float32"),
default_value=np.float32(3.5),
output_shape=np.array([5]).astype("int32"),
)

# default value not specified
_test_sparse_to_dense(
sparse_indices=np.array([0, 1, 4]).astype("int32"),
sparse_values=np.array([3.1, 3.1, 3.1]).astype("float32"),
default_value=None,
output_shape=np.array([5]).astype("int32"),
)


#######################################################################
# tensorflow.sparse.to_dense
# ---------------
def _test_sparse_to_dense_v2(indices, values, A_shape, dtype, default_value=None):
with tf.Graph().as_default():
A_sp = tf.sparse.SparseTensor(indices=indices, values=values, dense_shape=A_shape)

result = tf.sparse.to_dense(A_sp, default_value=default_value)

compare_tf_with_tvm([], [], result.name)


def test_forward_sparse_to_dense_v2():
_test_sparse_to_dense_v2([[1]], [3.0], [5], "float32")
_test_sparse_to_dense_v2([[1]], [3.0], [5], "float32", 0.3)
_test_sparse_to_dense_v2([[0, 0], [1, 2]], [4.0, 8.0], [3, 4], "float32")
ANSHUMAN87 marked this conversation as resolved.
Show resolved Hide resolved
_test_sparse_to_dense_v2([[0, 0], [1, 2]], [4.0, 8.0], [3, 4], "float32", 1.3)
_test_sparse_to_dense_v2([[0, 0], [1, 3], [4, 3]], [3.0, 6.0, 9.0], [5, 5], "float32")
_test_sparse_to_dense_v2([[0, 0], [1, 3], [4, 3]], [3.0, 6.0, 9.0], [5, 5], "float32", 1.9)


#######################################################################
# StridedSlice
# ------------
Expand Down Expand Up @@ -4227,83 +4325,6 @@ def test_forward_identityn(data_np_list):
_test_identityn(data_np_list)


#######################################################################
# Sparse To Dense
# ---------------
def _test_sparse_to_dense(sparse_indices, sparse_values, default_value, output_shape):
with tf.Graph().as_default():
indices = tf.placeholder(
shape=sparse_indices.shape, dtype=str(sparse_indices.dtype), name="indices"
)
values = tf.placeholder(
shape=sparse_values.shape, dtype=str(sparse_values.dtype), name="values"
)
oshape = tf.constant(output_shape, shape=output_shape.shape, dtype=str(output_shape.dtype))

if default_value == None:
output = tf.sparse_to_dense(indices, oshape, values)
compare_tf_with_tvm(
[sparse_indices, sparse_values], ["indices:0", "values:0"], output.name
)
else:
dv = tf.placeholder(shape=(), dtype=str(default_value.dtype), name="default_value")
output = tf.sparse_to_dense(indices, oshape, values, dv)
compare_tf_with_tvm(
[sparse_indices, sparse_values, default_value],
["indices:0", "values:0", "default_value:0"],
output.name,
)


def test_forward_sparse_to_dense():
# scalar
_test_sparse_to_dense(
sparse_indices=np.int32(1),
sparse_values=np.int32(3),
default_value=np.int32(0),
output_shape=np.array([5]).astype("int32"),
)

# vector
_test_sparse_to_dense(
sparse_indices=np.array([0, 1, 4]).astype("int32"),
sparse_values=np.array([3, 3, 3]).astype("int32"),
default_value=np.int32(0),
output_shape=np.array([5]).astype("int32"),
)

# vector nXd
_test_sparse_to_dense(
sparse_indices=np.array([[0, 0], [1, 2]]).astype("int32"),
sparse_values=np.array([1, 2]).astype("int32"),
default_value=np.int32(0),
output_shape=np.array([3, 4]).astype("int32"),
)

_test_sparse_to_dense(
sparse_indices=np.array([[0, 0, 0], [1, 2, 3]]).astype("int32"),
sparse_values=np.array([1, 2]).astype("int32"),
default_value=np.int32(4),
output_shape=np.array([2, 3, 4]).astype("int32"),
)

# floats
_test_sparse_to_dense(
sparse_indices=np.array([0, 1, 4]).astype("int32"),
sparse_values=np.array([3.1, 3.1, 3.1]).astype("float32"),
default_value=np.float32(3.5),
output_shape=np.array([5]).astype("int32"),
)

# default value not specified
_test_sparse_to_dense(
sparse_indices=np.array([0, 1, 4]).astype("int32"),
sparse_values=np.array([3.1, 3.1, 3.1]).astype("float32"),
default_value=None,
output_shape=np.array([5]).astype("int32"),
)


#######################################################################
# infinity ops
# ------------
Expand Down