Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Move SimplifyConvPad to a new pass and don't enable it by default #7603

Merged
merged 5 commits into from
Mar 6, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions python/tvm/relay/transform/transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -1099,6 +1099,19 @@ def SimplifyExpr():
return _ffi_api.SimplifyExpr()


def FoldExplicitPadding():
"""
FoldExplicitPadding finds explict padding before an op that can support
implicit padding and fuses them.

Returns
-------
ret : tvm.transform.Pass
The registered ImplicitPadding pass.
"""
return _ffi_api.FoldExplicitPadding()


def AnnotateSpans():
"""
Annotate a program with span information by first generating its textual
Expand Down
207 changes: 207 additions & 0 deletions src/relay/transforms/fold_explicit_padding.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,207 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* \file src/relay/transforms/fold_explicit_padding.cc
* \brief A pass for folding explicit pads into other ops.
*/

#include <tvm/relay/dataflow_matcher.h>
#include <tvm/relay/expr.h>
#include <tvm/relay/expr_functor.h>
#include <tvm/relay/transform.h>
#include <tvm/support/logging.h>

#include "../op/tensor/transform.h"
#include "pattern_utils.h"

namespace tvm {
namespace relay {

/*!
* \brief SimplifyConvPad matches a pad followed by a conv/convtranspose/pool/etc
* with a pad attribute and merges the padding into the kernel.
*/
class SimplifyConvPad {
public:
DFPattern pattern() const { return pattern_; }

SimplifyConvPad() {
x_ = IsWildcard();
w_ = IsWildcard();
pad_ = IsOp("nn.pad")({x_});
conv1d_ = IsOp("nn.conv1d");
conv2d_ = IsOp("nn.conv2d");
conv3d_ = IsOp("nn.conv3d");
conv_ = (conv1d_ || conv2d_ || conv3d_)({pad_, w_});
pattern_ = conv_;
}

template <typename T>
Attrs MakeConvAttrs(const T* old_attrs, const Array<PrimExpr> padding) const {
ICHECK(old_attrs);
ICHECK(padding.size() == old_attrs->padding.size())
<< "Number of dimensions to pad and convolution padding attributes should have the same "
"extent";

auto new_attrs = make_object<T>();
Array<PrimExpr> combined_padding;
for (size_t i = 0; i < padding.size(); ++i) {
combined_padding.push_back(padding[i] + old_attrs->padding[i]);
}
new_attrs->strides = old_attrs->strides;
new_attrs->padding = combined_padding;
new_attrs->dilation = old_attrs->dilation;
new_attrs->groups = old_attrs->groups;
new_attrs->channels = old_attrs->channels;
new_attrs->kernel_size = old_attrs->kernel_size;
new_attrs->data_layout = old_attrs->data_layout;
new_attrs->kernel_layout = old_attrs->kernel_layout;
new_attrs->out_layout = old_attrs->out_layout;
new_attrs->out_dtype = old_attrs->out_dtype;
return Attrs(new_attrs);
}

template <typename T>
Attrs GetAttrs(const PadAttrs* param, const T* attrs) const {
ICHECK(param);
ICHECK(attrs);
ICHECK(attrs->data_layout.size() == param->pad_width.size())
<< "Data Layout and padding attributes should have the same extent";

std::string data_layout = attrs->data_layout;
std::set<char> image_dims({'H', 'W', 'D'});
Array<PrimExpr> padding;
// If we're padding a non-spatial dimension, don't simplify
// Convolution can only pad on spatial axes
for (size_t i = 0; i < param->pad_width.size(); ++i) {
if (!image_dims.count(data_layout[i])) {
for (size_t j = 0; j < param->pad_width[i].size(); ++j) {
if (param->pad_width[i][j] != 0) {
return Attrs();
}
}
}
}
for (size_t j = 0; j < param->pad_width[0].size(); ++j) {
for (size_t i = 0; i < param->pad_width.size(); ++i) {
if (image_dims.count(data_layout[i])) {
padding.push_back(param->pad_width[i][j]);
}
}
}

return MakeConvAttrs(attrs, padding);
}

Expr callback(const Expr& pre, const Expr& post,
const Map<DFPattern, Array<Expr>>& node_map) const {
const CallNode* call_node = post.as<CallNode>();
ICHECK(call_node);
auto pad = node_map[pad_][0];
const CallNode* pad_node = pad.as<CallNode>();
ICHECK(pad_node);
const PadAttrs* param = pad_node->attrs.as<PadAttrs>();
ICHECK(param);
if (param->pad_mode == "constant" && param->pad_value == 0.0) {
Attrs attrs;
if (node_map.count(conv1d_)) {
attrs = GetAttrs(param, call_node->attrs.as<Conv1DAttrs>());
} else if (node_map.count(conv2d_)) {
attrs = GetAttrs(param, call_node->attrs.as<Conv2DAttrs>());
} else if (node_map.count(conv3d_)) {
attrs = GetAttrs(param, call_node->attrs.as<Conv3DAttrs>());
} else {
return post;
}
if (!attrs.defined()) {
return post;
}
auto x = node_map[x_][0];
auto w = node_map[w_][0];
return Call(call_node->op, {x, w}, attrs, call_node->type_args, call_node->span);
}
return post;
}

private:
/*! \brief Pattern for rewriting */
DFPattern pattern_;
/*! \brief Pattern input */
DFPattern x_;
/*! \brief Pattern input weight */
DFPattern w_;
/*! \brief Pattern pad */
DFPattern pad_;
/*! \brief Pattern conv */
DFPattern conv_;
DFPattern conv1d_;
DFPattern conv2d_;
DFPattern conv3d_;
};

class SimplifyExplicitPadding {
public:
explicit SimplifyExplicitPadding(IRModule mod) : mod_(mod) {
CreateCallback(SimplifyConvPad());
// TODO(mbrookhart): ConvTranspose(Pad(x)), Pool(Pad(x))
}
template <typename T>
void CreateCallback(const T& pattern) {
auto func = [pattern](TVMArgs args, TVMRetValue* rv) {
Expr pre = args[0];
Expr post = args[1];
Map<DFPattern, Array<Expr>> node_map = args[2];
*rv = pattern.callback(pre, post, node_map);
};
callbacks_.push_back(DFPatternCallback(pattern.pattern(), PackedFunc(func), true));
}

Expr Simplify(const Expr& expr) { return RewritePatterns(callbacks_, expr, mod_); }

private:
IRModule mod_;
/*! \brief Callbacks for expr simplification */
Array<DFPatternCallback> callbacks_;
};

/*!
* \brief ImplicitPadding finds explict padding before an op that can
* support implicit padding and fuses them.
*/
Expr FoldExplicitPadding(const Expr& expr, const IRModule& mod) {
return SimplifyExplicitPadding(mod).Simplify(expr);
}

namespace transform {

Pass FoldExplicitPadding() {
runtime::TypedPackedFunc<Function(Function, IRModule, PassContext)> pass_func =
[=](Function f, IRModule m, PassContext pc) {
return Downcast<Function>(FoldExplicitPadding(f, m));
};
return CreateFunctionPass(pass_func, 0, " FoldExplicitPadding", {"InferType"});
}

TVM_REGISTER_GLOBAL("relay._transform.FoldExplicitPadding").set_body_typed(FoldExplicitPadding);

} // namespace transform

} // namespace relay
} // namespace tvm
116 changes: 0 additions & 116 deletions src/relay/transforms/simplify_expr.cc
Original file line number Diff line number Diff line change
Expand Up @@ -82,121 +82,6 @@ class SimplifyReshape : public SimplifyPattern {
DFPattern x_;
};

/*!
* \brief SimplifyConvPad matches a pad followed by a conv/convtranspose/pool/etc
* with a pad attribute and merges the padding into the kernel.
*/
class SimplifyConvPad : public SimplifyPattern {
public:
SimplifyConvPad() {
x_ = IsWildcard();
w_ = IsWildcard();
pad_ = IsOp("nn.pad")({x_});
conv1d_ = IsOp("nn.conv1d");
conv2d_ = IsOp("nn.conv2d");
conv3d_ = IsOp("nn.conv3d");
conv_ = (conv1d_ || conv2d_ || conv3d_)({pad_, w_});
pattern_ = conv_;
}
template <typename T>
Attrs MakeConvAttrs(const T* old_attrs, const Array<PrimExpr> padding) const {
ICHECK(old_attrs);
ICHECK(padding.size() == old_attrs->padding.size())
<< "Number of dimensions to pad and convolution padding attributes should have the same "
"extent";

auto new_attrs = make_object<T>();
Array<PrimExpr> combined_padding;
for (size_t i = 0; i < padding.size(); ++i) {
combined_padding.push_back(padding[i] + old_attrs->padding[i]);
}
new_attrs->strides = old_attrs->strides;
new_attrs->padding = combined_padding;
new_attrs->dilation = old_attrs->dilation;
new_attrs->groups = old_attrs->groups;
new_attrs->channels = old_attrs->channels;
new_attrs->kernel_size = old_attrs->kernel_size;
new_attrs->data_layout = old_attrs->data_layout;
new_attrs->kernel_layout = old_attrs->kernel_layout;
new_attrs->out_layout = old_attrs->out_layout;
new_attrs->out_dtype = old_attrs->out_dtype;
return Attrs(new_attrs);
}
template <typename T>
Attrs GetAttrs(const PadAttrs* param, const T* attrs) const {
ICHECK(param);
ICHECK(attrs);
ICHECK(attrs->data_layout.size() == param->pad_width.size())
<< "Data Layout and padding attributes should have the same extent";

std::string data_layout = attrs->data_layout;
std::set<char> image_dims({'H', 'W', 'D'});
Array<PrimExpr> padding;
// If we're padding a non-spatial dimension, don't simplify
// Convolution can only pad on spatial axes
for (size_t i = 0; i < param->pad_width.size(); ++i) {
if (!image_dims.count(data_layout[i])) {
for (size_t j = 0; j < param->pad_width[i].size(); ++j) {
if (param->pad_width[i][j] != 0) {
return Attrs();
}
}
}
}
for (size_t j = 0; j < param->pad_width[0].size(); ++j) {
for (size_t i = 0; i < param->pad_width.size(); ++i) {
if (image_dims.count(data_layout[i])) {
padding.push_back(param->pad_width[i][j]);
}
}
}

return MakeConvAttrs(attrs, padding);
}
Expr callback(const Expr& pre, const Expr& post,
const Map<DFPattern, Array<Expr>>& node_map) const override {
const CallNode* call_node = post.as<CallNode>();
ICHECK(call_node);
auto pad = node_map[pad_][0];
const CallNode* pad_node = pad.as<CallNode>();
ICHECK(pad_node);
const PadAttrs* param = pad_node->attrs.as<PadAttrs>();
ICHECK(param);
if (param->pad_mode == "constant" && param->pad_value == 0.0) {
Attrs attrs;
if (node_map.count(conv1d_)) {
attrs = GetAttrs(param, call_node->attrs.as<Conv1DAttrs>());
} else if (node_map.count(conv2d_)) {
attrs = GetAttrs(param, call_node->attrs.as<Conv2DAttrs>());
} else if (node_map.count(conv3d_)) {
attrs = GetAttrs(param, call_node->attrs.as<Conv3DAttrs>());
} else {
return post;
}
if (!attrs.defined()) {
return post;
}
auto x = node_map[x_][0];
auto w = node_map[w_][0];
return Call(call_node->op, {x, w}, attrs, call_node->type_args, call_node->span);
}
return post;
}

private:
/*! \brief Pattern input */
DFPattern x_;
/*! \brief Pattern input weight */
DFPattern w_;
/*! \brief Pattern pad */
DFPattern pad_;
/*! \brief Pattern conv */
DFPattern conv_;
DFPattern conv1d_;
DFPattern conv2d_;
DFPattern conv3d_;
};

/*!
* \brief FullArgwhere finds full followed by argwhere and turns it into an Arange op
*/
Expand Down Expand Up @@ -278,7 +163,6 @@ class ExprSimplifier {
explicit ExprSimplifier(IRModule mod) : mod_(mod) {
CreateCallback(SimplifyReshape());
CreateCallback(FullElementwise());
CreateCallback(SimplifyConvPad());
}
template <typename T>
void CreateCallback(const T& pattern) {
Expand Down
Loading