Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relay][ONNX][Frontend] Fix issue when group attribute isnt defined in convtranspose. #7655

Merged
merged 1 commit into from
Mar 15, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion python/tvm/relay/frontend/onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -446,7 +446,7 @@ def _impl_v1(cls, inputs, attr, params):
# get number of channels
channels = infer_channels(inputs[1], True)
attr["channels"] = channels
groups = attr.pop("group")
groups = attr.get("group", 1)
attr["groups"] = groups
# infer pads for auto_pad
data = inputs[0]
Expand Down
68 changes: 29 additions & 39 deletions tests/python/frontend/onnx/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -2489,42 +2489,27 @@ def verify_convtranspose_with_padding(
dilations,
auto_pad="NOTSET",
unset_pad=False,
group=1,
):
if unset_pad:
node = helper.make_node(
"ConvTranspose",
inputs=["x", "W"],
outputs=["y"],
kernel_shape=kernel_shape,
# Default values for other attributes:
strides=strides,
dilations=dilations,
group=1,
)
elif padding is None:
node = helper.make_node(
"ConvTranspose",
inputs=["x", "W"],
outputs=["y"],
kernel_shape=kernel_shape,
# Default values for other attributes:
strides=strides,
dilations=dilations,
group=1,
auto_pad=auto_pad,
)
else:
node = helper.make_node(
"ConvTranspose",
inputs=["x", "W"],
outputs=["y"],
kernel_shape=kernel_shape,
# Default values for other attributes:
strides=strides,
dilations=dilations,
group=1,
pads=padding,
)
node = helper.make_node(
"ConvTranspose",
inputs=["x", "W"],
outputs=["y"],
kernel_shape=kernel_shape,
# Default values for other attributes:
strides=strides,
dilations=dilations,
)
if not unset_pad:
if padding is None:
pad_attr = helper.make_attribute("auto_pad", auto_pad)
else:
pad_attr = helper.make_attribute("pads", padding)
node.attribute.append(pad_attr)

if group is not None:
group_attr = helper.make_attribute("group", group)
node.attribute.append(group_attr)

graph = helper.make_graph(
[node],
Expand All @@ -2536,22 +2521,25 @@ def verify_convtranspose_with_padding(
outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(y_shape))],
)

model = helper.make_model(graph, producer_name="conv_test")
model = helper.make_model(graph, producer_name="convtranspose_pad_test")

verify_with_ort(model, [x_shape, w_shape], [y_shape], use_vm=True, convert_to_static=True)


def verify_convtranspose(x_shape, w_shape, y_shape, p):
def verify_convtranspose(x_shape, w_shape, y_shape, p, group=1):
node = onnx.helper.make_node(
"ConvTranspose",
inputs=["x", "W"],
outputs=["y"],
strides=[3, 2],
group=1,
kernel_shape=[3, 3],
pads=p,
)

if group is not None:
group_attr = helper.make_attribute("group", group)
node.attribute.append(group_attr)

graph = helper.make_graph(
[node],
"verify_convtranspose_test",
Expand All @@ -2562,7 +2550,7 @@ def verify_convtranspose(x_shape, w_shape, y_shape, p):
outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(y_shape))],
)

model = helper.make_model(graph, producer_name="convtranspose_trest")
model = helper.make_model(graph, producer_name="convtranspose_test")
verify_with_ort(model, [x_shape, w_shape], y_shape)


Expand All @@ -2574,6 +2562,8 @@ def test_convtranspose():
# (1, 2, 7, 3) output tensor
# [1, 2, 1, 2] list for pads
verify_convtranspose((1, 1, 3, 3), (1, 2, 3, 3), (1, 2, 7, 3), [1, 2, 1, 2])
# Test undefined groups.
verify_convtranspose((1, 1, 3, 3), (1, 2, 3, 3), (1, 2, 7, 3), [1, 2, 1, 2], group=None)

def repeat(N, D):
return tuple([N for _ in range(D)])
Expand Down