Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Frontend][Pytorch] add suppport for 'aten::upsample_bicubic2d' #8648

Merged
merged 2 commits into from
Aug 5, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 7 additions & 4 deletions python/tvm/relay/frontend/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -1799,7 +1799,7 @@ def get_upsample_out_size(self, inputs, method):
else:
out_size.append(size)
else:
scale_index = 3 if method == "linear" else 2
scale_index = 3 if method != "nearest_neighbor" else 2
scales = inputs[scale_index]
assert scales is not None, "neither out size nor scale provided"
assert isinstance(scales, list)
Expand All @@ -1814,7 +1814,7 @@ def upsample(inputs, input_types):
data = inputs[0]
out_size = self.get_upsample_out_size(inputs, method)

if len(inputs) > 2 and method == "linear":
if len(inputs) > 2 and method != "nearest_neighbor":
align_corners = inputs[2]
else:
align_corners = False
Expand All @@ -1827,7 +1827,9 @@ def upsample(inputs, input_types):
coord_trans = "half_pixel"

def func(x):
return _op.image.resize2d(x, out_size, "NCHW", method, coord_trans)
return _op.image.resize2d(
x, out_size, "NCHW", method, coord_trans, cubic_alpha=-0.75
)

if self.is_quantized_tensor(data):
# input qparams are manually appended by us
Expand Down Expand Up @@ -2203,7 +2205,7 @@ def interpolate(self, inputs, input_types):
else:
coord_trans = "half_pixel"

return _op.image.resize2d(data, out_size, "NCHW", method, coord_trans)
return _op.image.resize2d(data, out_size, "NCHW", method, coord_trans, cubic_alpha=-0.75)

def numel(self, inputs, input_types):
return _op.ndarray_size(inputs[0])
Expand Down Expand Up @@ -2771,6 +2773,7 @@ def create_convert_map(self):
"aten::clamp_": self.clamp,
"aten::detach": self.identity,
"aten::upsample_bilinear2d": self.make_upsample("linear"),
"aten::upsample_bicubic2d": self.make_upsample("cubic"),
"aten::upsample_nearest2d": self.make_upsample("nearest_neighbor"),
"aten::upsample_trilinear3d": self.make_upsample3d("linear"),
"aten::upsample_nearest3d": self.make_upsample3d("nearest_neighbor"),
Expand Down
3 changes: 3 additions & 0 deletions tests/python/frontend/pytorch/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -1756,6 +1756,9 @@ def forward(self, x):
verify_model(Upsample(size=(64, 64), mode="bilinear", align_corners=True), inp)
verify_model(Upsample(scale=2, mode="bilinear", align_corners=True), inp)
verify_model(Upsample(size=(50, 50), mode="bilinear", align_corners=True), inp)
verify_model(Upsample(size=(64, 64), mode="bicubic", align_corners=True), inp)
verify_model(Upsample(scale=2, mode="bicubic", align_corners=True), inp)
verify_model(Upsample(size=(50, 50), mode="bicubic", align_corners=True), inp)


@tvm.testing.uses_gpu
Expand Down