Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[AMP] Disallow fp16 conversion for summation-like ops #8810

Merged
merged 2 commits into from
Aug 26, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 7 additions & 8 deletions python/tvm/relay/transform/mixed_precision.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,8 +81,6 @@
"divide",
"nn.bias_add",
"nn.batch_norm",
"sum",
"mean",
"sqrt",
"shape_of",
# Simple activations
Expand All @@ -107,15 +105,9 @@
# "nn.global_max_pool1d", # does not exist yet
"nn.global_max_pool2d",
# "nn.global_max_pool3d", # does not exist yet
# "nn.global_avg_pool1d", # does not exist yet
"nn.global_avg_pool2d",
# "nn.global_avg_pool3d", # does not exist yet
"nn.adaptive_max_pool1d",
"nn.adaptive_max_pool2d",
"nn.adaptive_max_pool3d",
"nn.adaptive_avg_pool1d",
"nn.adaptive_avg_pool2d",
"nn.adaptive_avg_pool3d",
]
DEFAULT_NEVER_LIST = [
# In general if |f(x)| >> |x| for expected inputs then put the op here.
Expand All @@ -131,6 +123,13 @@
# Do not allow arange arguments (begin/end) to be fp16. "end" can be a big fp32 number
# not representable in fp16.
"arange",
# Ops that could involve a large summation are not allowed in fp16.
"nn.global_avg_pool2d",
"nn.adaptive_avg_pool1d",
"nn.adaptive_avg_pool2d",
"nn.adaptive_avg_pool3d",
"sum",
"mean",
]


Expand Down
31 changes: 22 additions & 9 deletions tests/python/relay/test_to_mixed_precision.py
Original file line number Diff line number Diff line change
Expand Up @@ -221,23 +221,36 @@ def test_do_not_convert_softmax():
b = relay.nn.softmax(a)
mod = tvm.IRModule.from_expr(b)
mod = tvm.relay.transform.InferType()(mod)

mod_params = {
"a": np.random.uniform(-1, 1, size=shape).astype("float32"),
}
output_mod = verify_mixed_precision_output_close(mod, mod_params, atol=0.0, rtol=0)
assert tvm.ir.structural_equal(mod, output_mod)
out_mod = ToMixedPrecision("float16")(mod)
orig_mod = tvm.relay.transform.InferType()(mod)
assert tvm.ir.structural_equal(orig_mod, out_mod)


def test_do_not_convert_arange():
"""Arange is a red listed operation and therefore should never be fp16."""
dtype = "float32"
arange = relay.arange(relay.const(1, dtype), relay.const(128, dtype))
mod = tvm.IRModule.from_expr(arange)
mod = tvm.relay.transform.InferType()(mod)
out_mod = ToMixedPrecision("float16")(mod)
orig_mod = tvm.relay.transform.InferType()(mod)
assert tvm.ir.structural_equal(orig_mod, out_mod)

output_mod = verify_mixed_precision_output_close(mod, {}, atol=0.0, rtol=0)
assert tvm.ir.structural_equal(mod, output_mod)

def test_do_not_convert_summation():
"""Ops that could involve a large summation are not allowed in fp16."""
shape = [1, 3, 16, 16]
a = relay.var("a", shape=shape)
ops = [
relay.sum,
relay.mean,
relay.nn.global_avg_pool2d,
lambda inp: relay.nn.adaptive_avg_pool2d(inp, (1, 1)),
]
for op in ops:
mod = tvm.IRModule.from_expr(op(a))
out_mod = ToMixedPrecision("float16")(mod)
orig_mod = tvm.relay.transform.InferType()(mod)
assert tvm.ir.structural_equal(orig_mod, out_mod)


def test_green_gray_propagates_simple():
Expand Down