Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[TFLite] Add option to overwrite OperatorConverter class in relay.frontend.from_tflite #9256

Merged
merged 2 commits into from
Oct 14, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 7 additions & 2 deletions python/tvm/relay/frontend/tflite.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,7 @@ def __init__(self, model, subgraph, exp_tab):
self.activation_fn_type = build_str_map(ActivationFunctionType())
self.builtin_options = build_str_map(BuiltinOptions())
self.prefetched_nodes = {}
self.allow_custom_ops = False

# Add more operators
self.convert_map = {
Expand Down Expand Up @@ -287,6 +288,10 @@ def get_op_code_str(self, op):
if op_code_id == BuiltinOperator.CUSTOM:
# Custom operator
custom_op_code_str = self.model.OperatorCodes(op_code_list_idx).CustomCode()

if self.allow_custom_ops:
return "CUSTOM"

if custom_op_code_str == b"TFLite_Detection_PostProcess":
return "DETECTION_POSTPROCESS"

Expand Down Expand Up @@ -3695,7 +3700,7 @@ def _input_type(model):
return shape_dict, dtype_dict


def from_tflite(model, shape_dict=None, dtype_dict=None):
def from_tflite(model, shape_dict=None, dtype_dict=None, op_converter=OperatorConverter):
"""Convert from tflite model into compatible relay Function.

Parameters
Expand Down Expand Up @@ -3755,7 +3760,7 @@ def from_tflite(model, shape_dict=None, dtype_dict=None):
exp_tab.set_expr(model_input_name, _expr.var(model_input_name, shape=shape, dtype=dtype))

# op code in model
op_converter = OperatorConverter(model, subgraph, exp_tab)
op_converter = op_converter(model, subgraph, exp_tab)
op_converter.check_unsupported_ops()
op_converter.convert_op_to_relay()

Expand Down
72 changes: 71 additions & 1 deletion tests/python/frontend/tflite/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -161,6 +161,7 @@ def run_tvm_graph(
target="llvm",
out_names=None,
mode="graph_executor",
op_converter=relay.frontend.tflite.OperatorConverter,
):
"""Generic function to compile on relay and execute on tvm"""
# TFLite.Model.Model has changed to TFLite.Model from 1.14 to 2.1
Expand All @@ -185,7 +186,7 @@ def run_tvm_graph(
dtype_dict[e] = input_data[i].dtype.name

mod, params = relay.frontend.from_tflite(
tflite_model, shape_dict=shape_dict, dtype_dict=dtype_dict
tflite_model, shape_dict=shape_dict, dtype_dict=dtype_dict, op_converter=op_converter
)

if mode in ["debug", "vm"]:
Expand Down Expand Up @@ -3996,6 +3997,72 @@ def test_detection_postprocess():
)


#######################################################################
# Custom Converter
# ----------------


def test_custom_op_converter():
"""Test case for user-defined operator converter in TFLite frontend"""

class DummyOperatorConverter(relay.frontend.tflite.OperatorConverter):
"""Operator Converter for converting TFLite ops to relay ops"""

def __init__(self, model, subgraph, exp_tab):
super(DummyOperatorConverter, self).__init__(model, subgraph, exp_tab)
self.allow_custom_ops = True

convert_map_overwrite = {"SUB": self.convert_sub_dummy}

self.convert_map.update(convert_map_overwrite)

def convert_sub_dummy(self, op):
"""Convert TFLite SUB"""
input_tensors = self.get_input_tensors(op)
assert len(input_tensors) == 2, "input tensors length should be 2"

lhs_tensor = input_tensors[0]
rhs_tensor = input_tensors[1]

lhs_expr = self.get_expr(lhs_tensor.tensor_idx)
rhs_expr = self.get_expr(rhs_tensor.tensor_idx)

temp_expr = relay.op.negative(rhs_expr)
out = relay.op.add(lhs_expr, temp_expr)

return out

with tf.Graph().as_default():
# Generate TFLite model for single addition
data = [
np.arange(6.0, dtype=np.float32).reshape((2, 1, 1, 3)),
np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 1, 1, 3)),
]
in_data = [
array_ops.placeholder(shape=data[0].shape, dtype="float32", name="in_0"),
array_ops.placeholder(shape=data[1].shape, dtype="float32", name="in_1"),
]
out = math_ops.subtract(in_data[0], in_data[1])
in_name = [x[1] for x in zip(in_data, ("in_0:0", "in_1:0"))]
input_tensors = [x for x in in_data]
output_tensors = [out]
in_node = [0] * len(in_name)
for i in range(len(in_name)):
in_node[i] = in_name[i].split(":")[0] if ":" in in_name[i] else in_name[i]

with tf.Session() as sess:
converter = tf.lite.TFLiteConverter.from_session(sess, input_tensors, output_tensors)
tflite_model_buf = converter.convert()
in_data = [x[1] for x in zip(in_data, data)]
tvm_output_orig = run_tvm_graph(tflite_model_buf, in_data, in_node)
tvm_output_dummy = run_tvm_graph(
tflite_model_buf, in_data, in_node, op_converter=DummyOperatorConverter
)
tvm.testing.assert_allclose(
np.squeeze(tvm_output_orig[0]), np.squeeze(tvm_output_dummy[0]), rtol=1e-5, atol=1e-5
)


#######################################################################
# Mobilenet
# ---------
Expand Down Expand Up @@ -4621,6 +4688,9 @@ def test_prevent_tensorflow_dynamic_range():
# Detection_PostProcess
test_detection_postprocess()

# Overwrite Converter
test_custom_op_converter()

# End to End
test_forward_mobilenet_v1()
test_forward_mobilenet_v2()
Expand Down