This repository contains the code used for the experiments presented in the paper
The repository is a fork of google's repository and borrows from Miech et al
The experiments was run with TensorFlow 1.8 on POWER8 machines with 4 TESLA v100 GPU.
The code is released under Apache License Version 2.0.
export TRAIN_FOLDER=data/yt8m/frame/
export OUT_FOLDER=output_folder
export N_GPUS=4
/!\ The files in the output_folder
will be erase if you re-run an experiment in the same folder.
Record the global parameters:
export PARAMS="--train_data_pattern=${TRAIN_FOLDER}train*.tfrecord,${TRAIN_FOLDER}validate[A-Za-z]*.tfrecord --frame_features=True --feature_names=rgb,audio --feature_sizes=1024,128 --iterations=15 --sample_random_frames=True --num_gpu=${N_GPUS} --num_readers=100 --batch_size=80 --num_epochs=15 --base_learning_rate=0.0002 --learning_rate_decay=0.8 --data_augmentation=True --n_bagging=10 --moe_num_mixtures=4 --moe_add_batch_norm=True --k_factor=1 --dbof_cluster_size=8192 --fc_hidden_size=512 --fv_cluster_size=64 --netvlad_cluster_size=64 --model=CirulantDiagonalNetwork --start_new_model"
python3 code/train.py --train_dir=${OUT_FOLDER} --add_dbof=True --video_level_classifier_model=MoeModel ${PARAMS}
python3 code/train.py --train_dir=${OUT_FOLDER} --add_dbof=True --use_d_matrix=True --fc_dbof_circulant=True --video_level_classifier_model=MoeModel ${PARAMS}
DBoF figure
python3 code/train.py --train_dir=${OUT_FOLDER} --add_dbof=True --video_level_classifier_model=MoeModel ${PARAMS}
python3 code/train.py --train_dir=${OUT_FOLDER} --add_dbof=True --fc_dbof_circulant=True --video_level_classifier_model=MoeModel ${PARAMS}
NetVLAD figure
python3 code/train.py --train_dir=${OUT_FOLDER} --add_netvlad=True --video_level_classifier_model=MoeModel ${PARAMS}
python3 code/train.py --train_dir=${OUT_FOLDER} --add_netvlad=True --fc_netvlad_circulant=True --video_level_classifier_model=MoeModel ${PARAMS}
NetFisher figure
python3 code/train.py --train_dir=${OUT_FOLDER} --add_fisher_vector=True --video_level_classifier_model=MoeModel ${PARAMS}
python3 code/train.py --train_dir=${OUT_FOLDER} --add_fisher_vector=True --fc_netvlad_circulant=True --video_level_classifier_model=MoeModel ${PARAMS}
python3 code/train.py --train_dir=${OUT_FOLDER} --add_dbof=True --no_audio=True --video_level_classifier_model=MoeModel ${PARAMS}
python3 code/train.py --train_dir=${OUT_FOLDER} --add_dbof=True --no_audio=True --dbof_circulant=True --video_level_classifier_model=MoeModel ${PARAMS}
python3 code/train.py --train_dir=${OUT_FOLDER} --add_dbof=True --no_audio=True --fc_dbof_circulant=True --video_level_classifier_model=MoeModel ${PARAMS}
python3 code/train.py --train_dir=${OUT_FOLDER} --add_dbof=True --no_audio=True --video_level_classifier_model=Circulant_MoeModel ${PARAMS}