forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add custom vae (diffusers type) to onnx converter (open-mmlab#2325)
- Loading branch information
Showing
1 changed file
with
126 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
# Copyright 2022 The HuggingFace Team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import argparse | ||
import os | ||
import shutil | ||
from pathlib import Path | ||
|
||
import torch | ||
from torch.onnx import export | ||
|
||
import onnx | ||
from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline, AutoencoderKL | ||
from packaging import version | ||
|
||
|
||
is_torch_less_than_1_11 = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") | ||
|
||
|
||
def onnx_export( | ||
model, | ||
model_args: tuple, | ||
output_path: Path, | ||
ordered_input_names, | ||
output_names, | ||
dynamic_axes, | ||
opset, | ||
use_external_data_format=False, | ||
): | ||
output_path.parent.mkdir(parents=True, exist_ok=True) | ||
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, | ||
# so we check the torch version for backwards compatibility | ||
if is_torch_less_than_1_11: | ||
export( | ||
model, | ||
model_args, | ||
f=output_path.as_posix(), | ||
input_names=ordered_input_names, | ||
output_names=output_names, | ||
dynamic_axes=dynamic_axes, | ||
do_constant_folding=True, | ||
use_external_data_format=use_external_data_format, | ||
enable_onnx_checker=True, | ||
opset_version=opset, | ||
) | ||
else: | ||
export( | ||
model, | ||
model_args, | ||
f=output_path.as_posix(), | ||
input_names=ordered_input_names, | ||
output_names=output_names, | ||
dynamic_axes=dynamic_axes, | ||
do_constant_folding=True, | ||
opset_version=opset, | ||
) | ||
|
||
|
||
@torch.no_grad() | ||
def convert_models(model_path: str, output_path: str, opset: int, fp16: bool = False): | ||
dtype = torch.float16 if fp16 else torch.float32 | ||
if fp16 and torch.cuda.is_available(): | ||
device = "cuda" | ||
elif fp16 and not torch.cuda.is_available(): | ||
raise ValueError("`float16` model export is only supported on GPUs with CUDA") | ||
else: | ||
device = "cpu" | ||
output_path = Path(output_path) | ||
|
||
# VAE DECODER | ||
vae_decoder = AutoencoderKL.from_pretrained(model_path + "/vae") | ||
vae_latent_channels = vae_decoder.config.latent_channels | ||
vae_out_channels = vae_decoder.config.out_channels | ||
# forward only through the decoder part | ||
vae_decoder.forward = vae_decoder.decode | ||
onnx_export( | ||
vae_decoder, | ||
model_args=( | ||
torch.randn(1, vae_latent_channels, 25, 25).to(device=device, dtype=dtype), | ||
False, | ||
), | ||
output_path=output_path / "vae_decoder" / "model.onnx", | ||
ordered_input_names=["latent_sample", "return_dict"], | ||
output_names=["sample"], | ||
dynamic_axes={ | ||
"latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, | ||
}, | ||
opset=opset, | ||
) | ||
del vae_decoder | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
|
||
parser.add_argument( | ||
"--model_path", | ||
type=str, | ||
required=True, | ||
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", | ||
) | ||
|
||
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") | ||
parser.add_argument( | ||
"--opset", | ||
default=14, | ||
type=int, | ||
help="The version of the ONNX operator set to use.", | ||
) | ||
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") | ||
|
||
args = parser.parse_args() | ||
print(args.output_path) | ||
convert_models(args.model_path, args.output_path, args.opset, args.fp16) | ||
print("SD: Done: ONNX") |