forked from huangmozhilv/u2net_torch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtinies.py
executable file
·201 lines (164 loc) · 8.08 KB
/
tinies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#### @Chao Huang(huangchao09@zju.edu.cn).
# a custom package of small utilities compiled by Chao.
import os
import sys
import pdb
import itertools
import time
import shutil
import json
import numpy as np
from glob2 import glob
import SimpleITK as sitk
from ccToolkits import logger
import config
class ForkedPdb(pdb.Pdb):
"""A Pdb subclass that may be used
from a forked multiprocessing child
e.g. ForkedPdb().set_trace()
"""
def interaction(self, *args, **kwargs):
_stdin = sys.stdin
try:
sys.stdin = open('/dev/stdin')
pdb.Pdb.interaction(self, *args, **kwargs)
finally:
sys.stdin = _stdin
def newdir(path):
# always make new dir
if os.path.exists(path):
shutil.rmtree(path)
os.makedirs(path)
def sureDir(path):
# only make new dir when not existing
if not os.path.exists(path):
os.makedirs(path)
else:
pass
def datestr():
now = time.gmtime()
return '{}{:02}{:02}_{:02}{:02}'.format(now.tm_year, now.tm_mon, now.tm_mday, now.tm_hour, now.tm_min)
def timer(start, end):
'''
end-start: returns seconds
'''
hours, rem = divmod(end-start, 3600)
minutes, seconds = divmod(rem, 60)
return "hr:min:sec, {:0}:{:0>2}:{:0>2}".format(int(hours),int(minutes),int(seconds))
def calPatchWeights(patch_size, distType='Eu'):
'''
Args:
patch_size: list
Return:
patch_weights: numpy array of shape of patch_size
e.g:
p128 = tinies.calPatchWeights([128, 128, 128])
p128[0,0,0] # 0
p128[0,0,1] # 0.005
p128[127,0,0] # 0.005
p128[100,100,100] # 0.4375
p128[64,64,64] # 1
'''
# weights defined as inversely related to euclidean distance btw one point and the center. Closer to center, weigh more.
patch_weights = dists = np.zeros(patch_size)
def euDis(s):
dis = np.sqrt(np.sum(np.asarray([np.square(float(s[0])-patch_size[0]/2), np.square(float(s[1])-patch_size[1]/2), np.square(float((s[2]))-patch_size[2]/2)])))
return dis
# start = time.time()
dists_list = list(map(euDis, itertools.product(range(patch_size[0]), range(patch_size[1]), range(patch_size[2]))))
dists = np.asarray(dists_list).reshape(patch_size)
patch_weights = 1-(dists-dists.min())/(dists.max()-dists.min()) + 1e-20 # norm to (0,1)
# print("patch_weights cal time:{}".format(time.time()-start)) # 29.19s
# dists = (dists-dists.min())/(dists.max()-dists.min())
# patch_weights = np.sqrt(1-np.power(dists, 2) +0.000001)
return patch_weights
def pad2gePatch(img, patch_size, data_channel=None):
'''
for tasks like Task04_Hippocampus, some cases have images smaller than patch_size. In this case, use this function to pad to patch_size or larger, during eval, after CNN output, use crop to recover to original size.
'''
patch_size = np.asarray(patch_size)
if data_channel:
subimg_shape = np.asarray(img[0].shape)
else:
subimg_shape = np.asarray(img.shape)
pad_size = patch_size-subimg_shape
pad_size = np.clip(pad_size, 0, None)
half_pad_size = [int(i) for i in np.ceil(pad_size/2)]
padded_size = subimg_shape + np.asarray(half_pad_size)*2
new_subimg_shape = np.max([subimg_shape, padded_size], axis=0)
if np.any(pad_size):
if data_channel:
new_img = np.zeros([data_channel]+list(new_subimg_shape))
for ch in range(data_channel):
# new_img[ch] = np.pad(img[ch], ((0, pad_size[0]), (0, pad_size[1]), (0, pad_size[2])), mode='constant', constant_values = 0) # img[ch].min()-1000
new_img[ch] = np.pad(img[ch], ((half_pad_size[0], half_pad_size[0]), (half_pad_size[1], half_pad_size[1]), (half_pad_size[2], half_pad_size[2])), mode='constant', constant_values = 0) # img[ch].min()-1000
else:
new_img = np.zeros(list(new_subimg_shape))
# new_img = np.pad(img, ((0, pad_size[0]), (0, pad_size[1]), (0, pad_size[2])), mode='constant', constant_values = 0) # img.min()-1000
new_img = np.pad(img, ((half_pad_size[0], half_pad_size[0]), (half_pad_size[1], half_pad_size[1]), (half_pad_size[2], half_pad_size[2])), mode='constant', constant_values = 0) # img.min()-1000
else:
new_img = img
# return new_img, pad_size
return new_img, half_pad_size
def resample2fixedSpacing(volume, newSpacing, refer_file_path, interpolate_method=sitk.sitkBSpline):
# sitk.sitkLinear
'''
also works for 2-D?
Resample dat(i.e. one 3-D sitk image/GT) to destine resolution. but keep the origin, direction be the same.
Volume: 3D numpy array, z, y, x.
oldSpacing: z,y,x
newSpacing: z,y,x
refer_file_path: source to get origin, direction, and oldSpacing. Here we use the image_file path.
'''
# in the project, oldSpacing, origin, direction will be extracted from gt_file as the refer_file_path
sitk_refer = sitk.ReadImage(refer_file_path)
# extract first modality as sitk_refer if there are multiple modalities
if sitk_refer.GetDimension() == 4:
sitk_refer = sitk.Extract(sitk_refer, (sitk_refer.GetSize()[0], sitk_refer.GetSize()[1], sitk_refer.GetSize()[2], 0), (0,0,0,0))
origin = sitk_refer.GetOrigin()
oldSpacing = sitk_refer.GetSpacing()
direction = sitk_refer.GetDirection()
# prepare oldSize, oldSpacing, newSpacing, newSize in order of [x,y,z]
oldSize = np.asarray(volume.shape, dtype=float)[::-1]
oldSpacing = np.asarray([round(i, 3) for i in oldSpacing], dtype=float)
newSpacing = np.asarray([round(i, 3) for i in newSpacing], dtype=float)[::-1]
# compute new size, assuming same volume of tissue (not number of total pixels) before and after resampled
newSize = np.asarray(oldSize * oldSpacing/newSpacing, dtype=int)
# create sitk_old from array and set appropriate meta-data
sitk_old = sitk.GetImageFromArray(volume)
sitk_old.SetOrigin(origin)
sitk_old.SetSpacing(oldSpacing)
sitk_old.SetDirection(direction)
sitk_new = sitk.Resample(sitk_old, newSize.tolist(), sitk.Transform(), interpolate_method, origin, newSpacing, direction)
newVolume = sitk.GetArrayFromImage(sitk_new)
return newVolume
def resample2fixedSize(volume, oldSpacing, newSize, refer_file_path, interpolate_method=sitk.sitkNearestNeighbor):
'''
also works for 2-D?
Goal---resample to fixed size with new spacing, but keep the origin, direction be the same.
volume: 3-D numpy array, z, y, x. In this code package, this is the final predicted label map, its shape is that of cropped non-zero region resampled to fixed spacings.
newSize: z,y,x. in this project, its shape is that of the cropped non-zero region.
oldSpacing: z,y,x. the spacing of the volume. In this project, it's the isotropical spacing.
refer_file_path: source to get origin, direction, and newSpacing. Here we use the image_file path.
'''
# in the project, newSpacing, origin, direction will be extracted from gt_file as the refer_file_path
sitk_refer = sitk.ReadImage(refer_file_path)
# extract first modality as sitk_refer if there are multiple modalities
if sitk_refer.GetDimension() == 4:
sitk_refer = sitk.Extract(sitk_refer, (sitk_refer.GetSize()[0], sitk_refer.GetSize()[1], sitk_refer.GetSize()[2], 0), (0,0,0,0))
origin = sitk_refer.GetOrigin()
newSpacing = sitk_refer.GetSpacing()
direction = sitk_refer.GetDirection()
# prepare oldSize, oldSpacing, newSpacing, newSize in order of [x,y,z]
oldSpacing = np.asarray(oldSpacing, dtype=float)[::-1]
newSpacing = np.asarray(newSpacing, dtype=float)
# compute new size, assuming same volume of tissue (not number of total pixels) before and after resampled
newSize = np.asarray(newSize, dtype=int)[::-1]
# create sitk_old from array and set appropriate meta-data
sitk_old = sitk.GetImageFromArray(volume)
sitk_old.SetOrigin(origin)
sitk_old.SetSpacing(oldSpacing)
sitk_old.SetDirection(direction)
sitk_new = sitk.Resample(sitk_old, newSize.tolist(), sitk.Transform(), interpolate_method, origin, newSpacing, direction)
newVolume = sitk.GetArrayFromImage(sitk_new)
return newVolume