Skip to content

Commit

Permalink
gguf-py : simplify support for quant types (ggerganov#8838)
Browse files Browse the repository at this point in the history
* gguf-py : use classes for quants

* convert_hf : simplify internal quantization type selection

* gguf-py : fix flake8 lint

* gguf-py : fix BF16 numpy view type

* gguf-py : remove LlamaFileTypeMap

Too specific to 'llama.cpp', and would be a maintenance burden
to keep up to date.

* gguf-py : add generic quantize and dequantize functions

The quant classes no longer need to be known,
only the target or the source type,
for 'quantize' and 'dequantize', respectively.
  • Loading branch information
compilade authored and arthw committed Nov 15, 2024
1 parent a10fe6a commit 7db1eee
Show file tree
Hide file tree
Showing 4 changed files with 220 additions and 126 deletions.
99 changes: 45 additions & 54 deletions convert_hf_to_gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -251,12 +251,7 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter

return [(self.map_tensor_name(name), data_torch)]

def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
del name, new_name, bid, n_dims # unused

return False

def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
del name, new_name, bid, n_dims # unused

return False
Expand Down Expand Up @@ -285,54 +280,46 @@ def prepare_tensors(self):
for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
data: np.ndarray # type hint
n_dims = len(data.shape)
data_dtype = data.dtype
data_qtype: gguf.GGMLQuantizationType | None = None

# when both are True, f32 should win
extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)

# Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
# Conditions should closely match those in llama_model_quantize_internal in llama.cpp
extra_f32 = any(cond for cond in (
extra_f32,
n_dims == 1,
new_name.endswith("_norm.weight"),
))
if n_dims <= 1 or new_name.endswith("_norm.weight"):
data_qtype = gguf.GGMLQuantizationType.F32

# Conditions should closely match those in llama_model_quantize_internal in llama.cpp
# Some tensor types are always in float32
extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in (
gguf.MODEL_TENSOR.FFN_GATE_INP,
gguf.MODEL_TENSOR.POS_EMBD,
gguf.MODEL_TENSOR.TOKEN_TYPES,
))

# if f16 desired, convert any float32 2-dim weight tensors to float16
extra_f16 = any(cond for cond in (
extra_f16,
(name.endswith(".weight") and n_dims >= 2),
))

if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
data = gguf.quantize_bf16(data)
assert data.dtype == np.uint16
data_qtype = gguf.GGMLQuantizationType.BF16

elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
data = gguf.quantize_q8_0(data)
assert data.dtype == np.uint8
data_qtype = gguf.GGMLQuantizationType.Q8_0
if data_qtype is False and (
any(
self.match_model_tensor_name(new_name, key, bid)
for key in (
gguf.MODEL_TENSOR.FFN_GATE_INP,
gguf.MODEL_TENSOR.POS_EMBD,
gguf.MODEL_TENSOR.TOKEN_TYPES,
)
)
or not name.endswith(".weight")
):
data_qtype = gguf.GGMLQuantizationType.F32

else: # default to float16 for quantized tensors
if data_dtype != np.float16:
data = data.astype(np.float16)
# No override (data_qtype is False), or wants to be quantized (data_qtype is True)
if isinstance(data_qtype, bool):
if self.ftype == gguf.LlamaFileType.ALL_F32:
data_qtype = gguf.GGMLQuantizationType.F32
elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
data_qtype = gguf.GGMLQuantizationType.F16
elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
data_qtype = gguf.GGMLQuantizationType.BF16
elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
data_qtype = gguf.GGMLQuantizationType.Q8_0
else:
raise ValueError(f"Unknown file type: {self.ftype.name}")

if data_qtype is None: # by default, convert to float32
if data_dtype != np.float32:
data = data.astype(np.float32)
data_qtype = gguf.GGMLQuantizationType.F32
try:
data = gguf.quants.quantize(data, data_qtype)
except gguf.QuantError as e:
logger.warning("%s, %s", e, "falling back to F16")
data_qtype = gguf.GGMLQuantizationType.F16
data = gguf.quants.quantize(data, data_qtype)

shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape

Expand Down Expand Up @@ -1765,7 +1752,7 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter

return [(new_name, data_torch)]

def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
del name, new_name, bid # unused

return n_dims > 1
Expand Down Expand Up @@ -2786,18 +2773,22 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter

return [(new_name, data_torch)]

def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
del n_dims # unused

return bid is not None and new_name in (
self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
if bid is not None and new_name in (
self.format_tensor_name(
n, bid, ".weight" if name.endswith(".weight") else ""
)
for n in [
gguf.MODEL_TENSOR.SSM_CONV1D,
gguf.MODEL_TENSOR.SSM_X,
gguf.MODEL_TENSOR.SSM_DT,
gguf.MODEL_TENSOR.SSM_A,
gguf.MODEL_TENSOR.SSM_D,
]
)
):
return gguf.GGMLQuantizationType.F32

return super().tensor_force_quant(name, new_name, bid, n_dims)


@Model.register("CohereForCausalLM")
Expand Down
11 changes: 10 additions & 1 deletion gguf-py/gguf/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -1146,6 +1146,9 @@ class GGMLQuantizationType(IntEnum):
F64 = 28
IQ1_M = 29
BF16 = 30
Q4_0_4_4 = 31
Q4_0_4_8 = 32
Q4_0_8_8 = 33


# TODO: add GGMLFileType from ggml_ftype in ggml.h
Expand All @@ -1158,7 +1161,7 @@ class LlamaFileType(IntEnum):
MOSTLY_F16 = 1 # except 1d tensors
MOSTLY_Q4_0 = 2 # except 1d tensors
MOSTLY_Q4_1 = 3 # except 1d tensors
MOSTLY_Q4_1_SOME_F16 = 4 # tok_embeddings.weight and output.weight are F16
# MOSTLY_Q4_1_SOME_F16 = 4 # tok_embeddings.weight and output.weight are F16
# MOSTLY_Q4_2 = 5 # support has been removed
# MOSTLY_Q4_3 = 6 # support has been removed
MOSTLY_Q8_0 = 7 # except 1d tensors
Expand Down Expand Up @@ -1187,6 +1190,9 @@ class LlamaFileType(IntEnum):
MOSTLY_IQ4_XS = 30 # except 1d tensors
MOSTLY_IQ1_M = 31 # except 1d tensors
MOSTLY_BF16 = 32 # except 1d tensors
MOSTLY_Q4_0_4_4 = 33 # except 1d tensors
MOSTLY_Q4_0_4_8 = 34 # except 1d tensors
MOSTLY_Q4_0_8_8 = 35 # except 1d tensors

GUESSED = 1024 # not specified in the model file

Expand Down Expand Up @@ -1260,6 +1266,9 @@ def get_type(val: Any) -> GGUFValueType:
GGMLQuantizationType.F64: (1, 8),
GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
GGMLQuantizationType.BF16: (1, 2),
GGMLQuantizationType.Q4_0_4_4:(32, 2 + 16),
GGMLQuantizationType.Q4_0_4_8:(32, 2 + 16),
GGMLQuantizationType.Q4_0_8_8:(32, 2 + 16),
}


Expand Down
2 changes: 2 additions & 0 deletions gguf-py/gguf/lazy.py
Original file line number Diff line number Diff line change
Expand Up @@ -191,6 +191,8 @@ def from_eager(cls, t: Any) -> Any:
class LazyNumpyTensor(LazyBase):
_tensor_type = np.ndarray

shape: tuple[int, ...] # Makes the type checker happy in quants.py

@classmethod
def meta_with_dtype_and_shape(cls, dtype: DTypeLike, shape: tuple[int, ...]) -> np.ndarray[Any, Any]:
# The initial idea was to use np.nan as the fill value,
Expand Down
Loading

0 comments on commit 7db1eee

Please sign in to comment.