Skip to content

Latest commit

 

History

History

config

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Setting up the Configurations

Here we describe the different parameters set in each configuration file:

  • frame_dir: Directory where frames are stored.
  • save_dir: Directory to save dataset information.
  • store_dir: Directory to save model checkpoints, predictions, etc.
  • store_mode: 'store' if it's the first time running the script to prepare and store dataset information, or 'load' to load previously stored information.
  • batch_size: Batch size.
  • clip_len: Length of the clips in number of frames.
  • crop_dim: Dimension to crop the frames (if needed).
  • dataset: Name of the dataset ('finediving', 'fs_comp', or 'fs_perf').
  • radi_displacement: Radius of displacement used.
  • epoch_num_frames: Number of frames used per epoch.
  • feature_arch: Feature extractor architecture ('rny002_gsf' or 'rny008_gsf').
  • learning_rate: Learning rate.
  • mixup: Boolean indicating whether to use mixup or not.
  • modality: Input modality used ('rgb').
  • num_classes: Number of classes for the current dataset.
  • num_epochs: Number of epochs for training.
  • warm_up_epochs: Number of warm-up epochs.
  • start_val_epoch: Epoch where validation evaluation starts.
  • temporal_arch: Temporal architecture used ('ed_sgp_mixer').
  • n_layers: Number of blocks/layers used for the temporal architecture.
  • sgp_ks: Kernel size of the SGP and SGP-Mixer layers.
  • sgp_r: $r$ factor in SGP and SGP-Mixer layers.
  • test_only: Boolean indicating if only inference is performed or training + inference.
  • criterion: Criterion used for validation evaluation ('map', 'loss').
  • num_workers: Number of workers.