-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #72 from astro-informatics/testing/autodiff
add gradient tests
- Loading branch information
Showing
1 changed file
with
134 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
import pytest | ||
import numpy as np | ||
|
||
from s2wav.transforms import jax_wavelets | ||
from s2wav.filter_factory import filters | ||
from s2wav.utils import shapes | ||
import jax.numpy as jnp | ||
from jax.test_util import check_grads | ||
import s2fft | ||
|
||
L_to_test = [8] | ||
N_to_test = [3] | ||
J_min_to_test = [2] | ||
multiresolution = [False, True] | ||
reality = [False, True] | ||
sampling_to_test = ["mw", "mwss", "dh"] | ||
|
||
|
||
@pytest.mark.parametrize("L", L_to_test) | ||
@pytest.mark.parametrize("N", N_to_test) | ||
@pytest.mark.parametrize("J_min", J_min_to_test) | ||
@pytest.mark.parametrize("multiresolution", multiresolution) | ||
@pytest.mark.parametrize("reality", reality) | ||
def test_jax_synthesis_gradients( | ||
flm_generator, | ||
L: int, | ||
N: int, | ||
J_min: int, | ||
multiresolution: bool, | ||
reality: bool, | ||
): | ||
J = shapes.j_max(L) | ||
if J_min >= J: | ||
pytest.skip("J_min larger than J which isn't a valid test case.") | ||
|
||
# Generate wavelet filters | ||
filter = filters.filters_directional_vectorised(L, N, J_min) | ||
|
||
# Generate random signal | ||
flm = flm_generator(L=L, L_lower=0, spin=0, reality=reality) | ||
f = s2fft.inverse_jax(flm, L) | ||
f_wav, f_scal = jax_wavelets.analysis( | ||
f, | ||
L, | ||
N, | ||
J_min, | ||
multiresolution=multiresolution, | ||
reality=reality, | ||
filters=filter, | ||
) | ||
|
||
# Generate target signal | ||
flm_target = flm_generator(L=L, L_lower=0, spin=0, reality=reality) | ||
f_target = s2fft.inverse_jax(flm_target, L) | ||
|
||
def func(f_wav, f_scal): | ||
f = jax_wavelets.synthesis( | ||
f_wav, | ||
f_scal, | ||
L, | ||
N, | ||
J_min, | ||
multiresolution=multiresolution, | ||
reality=reality, | ||
filters=filter, | ||
) | ||
return jnp.sum(jnp.abs(f - f_target) ** 2) | ||
|
||
check_grads( | ||
func, | ||
( | ||
f_wav, | ||
f_scal, | ||
), | ||
order=1, | ||
modes=("rev"), | ||
) | ||
|
||
|
||
@pytest.mark.parametrize("L", L_to_test) | ||
@pytest.mark.parametrize("N", N_to_test) | ||
@pytest.mark.parametrize("J_min", J_min_to_test) | ||
@pytest.mark.parametrize("multiresolution", multiresolution) | ||
@pytest.mark.parametrize("reality", reality) | ||
def test_jax_analysis_gradients( | ||
flm_generator, | ||
L: int, | ||
N: int, | ||
J_min: int, | ||
multiresolution: bool, | ||
reality: bool, | ||
): | ||
J = shapes.j_max(L) | ||
if J_min >= J: | ||
pytest.skip("J_min larger than J which isn't a valid test case.") | ||
|
||
# Generate wavelet filters | ||
filter = filters.filters_directional_vectorised(L, N, J_min) | ||
|
||
# Generate random signal | ||
flm = flm_generator(L=L, L_lower=0, spin=0, reality=reality) | ||
f = s2fft.inverse_jax(flm, L) | ||
|
||
# Generate target signal | ||
flm_target = flm_generator(L=L, L_lower=0, spin=0, reality=reality) | ||
f_target = s2fft.inverse_jax(flm_target, L) | ||
f_wav_target, f_scal_target = jax_wavelets.analysis( | ||
f_target, | ||
L, | ||
N, | ||
J_min, | ||
multiresolution=multiresolution, | ||
reality=reality, | ||
filters=filter, | ||
) | ||
|
||
def func(f): | ||
f_wav, f_scal = jax_wavelets.analysis( | ||
f, | ||
L, | ||
N, | ||
J_min, | ||
multiresolution=multiresolution, | ||
reality=reality, | ||
filters=filter, | ||
) | ||
loss = jnp.sum(jnp.abs(f_scal - f_scal_target) ** 2) | ||
for j in range(J - J_min): | ||
loss += jnp.sum( | ||
jnp.abs(f_wav[j - J_min] - f_wav_target[j - J_min]) ** 2 | ||
) | ||
return loss | ||
|
||
check_grads(func, (f,), order=1, modes=("rev")) |