Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Prevent (most) NaN propagation in Background and BoxcarExtract #159

Merged
merged 3 commits into from
Dec 21, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 9 additions & 0 deletions CHANGES.rst
Original file line number Diff line number Diff line change
@@ -10,6 +10,14 @@ API Changes
Bug Fixes
^^^^^^^^^

- Output 1D spectra from Background no longer include NaNs. Output 1D
spectra from BoxcarExtract no longer include NaNs when none are present
in the extraction window. NaNs in the window will still propagate to
BoxcarExtract's extracted 1D spectrum. [#159]

- Backgrounds using median statistic properly ignore zero-weighted pixels
[#159]


1.3.0 (2022-12-05)
------------------
@@ -48,6 +56,7 @@ Bug Fixes
function after change to upstream API. This will make specreduce
be compatible with numpy 1.24 or later. [#155]


1.2.0 (2022-10-04)
------------------

30 changes: 18 additions & 12 deletions specreduce/background.py
Original file line number Diff line number Diff line change
@@ -133,14 +133,20 @@ def _to_trace(trace):

self.bkg_wimage = bkg_wimage

# mask user-highlighted and invalid values (if any) before taking stats
or_mask = (np.logical_or(~np.isfinite(self.image.data), self.image.mask)
if self.image.mask is not None
else ~np.isfinite(self.image.data))

if self.statistic == 'average':
self._bkg_array = np.average(self.image.data,
weights=self.bkg_wimage,
axis=self.crossdisp_axis)
image_ma = np.ma.masked_array(self.image.data, mask=or_mask)
self._bkg_array = np.ma.average(image_ma,
weights=self.bkg_wimage,
axis=self.crossdisp_axis).data
elif self.statistic == 'median':
med_image = self.image.data.copy()
med_image[np.where(self.bkg_wimage) == 0] = np.nan
self._bkg_array = np.nanmedian(med_image, axis=self.crossdisp_axis)
med_mask = np.logical_or(self.bkg_wimage == 0, or_mask)
image_ma = np.ma.masked_array(self.image.data, mask=med_mask)
self._bkg_array = np.ma.median(image_ma, axis=self.crossdisp_axis).data
else:
raise ValueError("statistic must be 'average' or 'median'")

@@ -232,7 +238,7 @@ def bkg_image(self, image=None):

Returns
-------
Spectrum1D object with same shape as ``image``.
`~specutils.Spectrum1D` object with same shape as ``image``.
"""
image = self._parse_image(image)
return Spectrum1D(np.tile(self._bkg_array,
@@ -261,11 +267,11 @@ def bkg_spectrum(self, image=None):
bkg_image = self.bkg_image(image)

try:
return bkg_image.collapse(np.sum, axis=self.crossdisp_axis)
return bkg_image.collapse(np.nansum, axis=self.crossdisp_axis)
except u.UnitTypeError:
# can't collapse with a spectral axis in pixels because
# SpectralCoord only allows frequency/wavelength equivalent units...
ext1d = np.sum(bkg_image.flux, axis=self.crossdisp_axis)
ext1d = np.nansum(bkg_image.flux, axis=self.crossdisp_axis)
return Spectrum1D(ext1d, bkg_image.spectral_axis)

def sub_image(self, image=None):
@@ -280,7 +286,7 @@ def sub_image(self, image=None):

Returns
-------
array with same shape as ``image``
`~specutils.Spectrum1D` object with same shape as ``image``.
"""
image = self._parse_image(image)

@@ -313,11 +319,11 @@ def sub_spectrum(self, image=None):
sub_image = self.sub_image(image=image)

try:
return sub_image.collapse(np.sum, axis=self.crossdisp_axis)
return sub_image.collapse(np.nansum, axis=self.crossdisp_axis)
except u.UnitTypeError:
# can't collapse with a spectral axis in pixels because
# SpectralCoord only allows frequency/wavelength equivalent units...
ext1d = np.sum(sub_image.flux, axis=self.crossdisp_axis)
ext1d = np.nansum(sub_image.flux, axis=self.crossdisp_axis)
return Spectrum1D(ext1d, spectral_axis=sub_image.spectral_axis)

def __rsub__(self, image):
6 changes: 4 additions & 2 deletions specreduce/extract.py
Original file line number Diff line number Diff line change
@@ -236,8 +236,10 @@ def __call__(self, image=None, trace_object=None, width=None,
crossdisp_axis,
self.image.shape)

# extract
ext1d = np.sum(self.image.data * wimg, axis=crossdisp_axis)
# extract, assigning no weight to non-finite pixels outside the window
# (non-finite pixels inside the window will still make it into the sum)
image_windowed = np.where(wimg, self.image.data*wimg, 0)
ext1d = np.sum(image_windowed, axis=crossdisp_axis)
return Spectrum1D(ext1d * self.image.unit,
spectral_axis=self.image.spectral_axis)

27 changes: 21 additions & 6 deletions specreduce/tests/test_background.py
Original file line number Diff line number Diff line change
@@ -13,11 +13,11 @@
# Test image is comprised of 30 rows with 10 columns each. Row content
# is row index itself. This makes it easy to predict what should be the
# value extracted from a region centered at any arbitrary Y position.
image = np.ones(shape=(30, 10))
for j in range(image.shape[0]):
image[j, ::] *= j
image = Spectrum1D(image * u.DN,
uncertainty=VarianceUncertainty(np.ones_like(image)))
img = np.ones(shape=(30, 10))
for j in range(img.shape[0]):
img[j, ::] *= j
image = Spectrum1D(img * u.DN,
uncertainty=VarianceUncertainty(np.ones_like(img)))
image_um = Spectrum1D(image.flux,
spectral_axis=np.arange(image.data.shape[1]) * u.um,
uncertainty=VarianceUncertainty(np.ones_like(image.data)))
@@ -28,7 +28,7 @@ def test_background():
# Try combinations of extraction center, and even/odd
# extraction aperture sizes.
#
trace_pos = 15.0
trace_pos = 15
trace = FlatTrace(image, trace_pos)
bkg_sep = 5
bkg_width = 2
@@ -72,10 +72,25 @@ def test_background():
assert isinstance(bkg_spec, Spectrum1D)
sub_spec = bg1.sub_spectrum()
assert isinstance(sub_spec, Spectrum1D)

# test that width==0 results in no background
bg = Background.two_sided(image, trace, bkg_sep, width=0)
assert np.all(bg.bkg_image().flux == 0)

# test that any NaNs in input image (whether in or outside the window) don't
# propagate to _bkg_array (which affects bkg_image and sub_image methods) or
# the final 1D spectra.
img[0, 0] = np.nan # out of window
img[trace_pos, 0] = np.nan # in window
stats = ['average', 'median']

for st in stats:
bg = Background(img, trace-bkg_sep, width=bkg_width, statistic=st)
assert np.isnan(bg.image.flux).sum() == 2
assert np.isnan(bg._bkg_array).sum() == 0
assert np.isnan(bg.bkg_spectrum().flux).sum() == 0
assert np.isnan(bg.sub_spectrum().flux).sum() == 0


def test_warnings_errors():
# image.shape (30, 10)