-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgotoXY_camera.py
327 lines (265 loc) · 10.7 KB
/
gotoXY_camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
#!/usr/bin/env python
import rospy
from geometry_msgs.msg import Twist
#from turtlesim.msg import Pose
from math import pow,atan2,sqrt
from nav_msgs.msg import Odometry
import tf
import math
from math import radians, degrees
from time import sleep
listener = tf.TransformListener()
def getYaw(self):
quaternion = (self.pose.pose.pose.orientation.x, self.pose.pose.pose.orientation.y, self.pose.pose.pose.orientation.z, self.pose.pose.pose.orientation.w)
euler = tf.transformations.euler_from_quaternion(quaternion)
yaw = euler[2]
return yaw
def getCameraData():
listener = tf.TransformListener()
camera_check = True
while camera_check:
try:
(trans,rot) = listener.lookupTransform('/map_zero', '/hd_cam_new', rospy.Time(0))
except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException):
continue
# trans contains the x, y, and z components of the position of the camera with respect to map (units are in meters)
x = trans[0]
y = trans[1]
z = trans[2]
# rot is a quaternion containing the rotational components of the translation between the map and the camera
# Since euler angles are somewhat easier to work with, we will convert to those:
euler = tf.transformations.euler_from_quaternion(rot)
# Lastly, since the default units are radians, we will convert to degrees since it is more intuitive
roll = math.degrees(euler[0])
pitch = math.degrees(euler[1])
yaw = (euler[2])
print "TRANSLATIONAL COMPONENTS"
print "X: " + str(x)
print "Y: " + str(y)
print "Z: " + str(z)
print ""
print "ROTATIONAL COMPONENTS"
print "ROLL: " + str(roll)
print "PITCH: " + str(pitch)
print "YAW: " + str(yaw)
print "------------------------------"
camera_check = False
xyYawTuple = (x,y,yaw)
return xyYawTuple
def gotoPosition(x,y,distance_tolerance)
initial = getCameraData()
camera_x = initial
target_distance = math.sqrt((x-self.pose.pose.pose.position.x)**2 + (y-self.pose.pose.pose.position.y)**2)
current_camera_distance = math.sqrt((initial[0])**2 + (initial[1])**2)
current_distance = 0
while (current_camera_distance <= target_distance)
while (target_distance - current_distance >= distance_tolerance):
#Proportional Controller
#linear velocity in the x-axis:
v_x = 1.5 * sqrt(pow((x - self.pose.pose.pose.position.x), 2) + pow((y - self.pose.pose.pose.position.y), 2))
if(v_x > 0.5):
v_x = 0.5
vel_msg.linear.x = v_x
vel_msg.linear.y = 0
vel_msg.linear.z = 0
print "target_distance:"
print target_distance
print "current_distance:"
print current_distance
#target_distance = math.sqrt((goal_pose.pose.pose.position.x)**2 + (goal_pose.pose.pose.position.y)**2)
current_distance = math.sqrt((self.pose.pose.pose.position.x-current_x)**2 + (self.pose.pose.pose.position.y-current_y)**2)
#Publishing our vel_msg
self.velocity_publisher.publish(vel_msg)
self.rate.sleep()
#Stopping our robot after the movement is over
vel_msg.linear.x = 0
#vel_msg.angular.z = orientation - yaw
#(temporary for testing purposes)
# vel_msg.angular.z = 0
self.velocity_publisher.publish(vel_msg)
class gotoXY():
def __init__(self):
#Creating our node,publisher and subscriber
rospy.init_node('gotoXY_straight')
self.velocity_publisher = rospy.Publisher('/cmd_vel', Twist, queue_size=10)
self.pose_subscriber = rospy.Subscriber('/odom', Odometry, self.callback)
#self.pose = Pose()
self.pose = Odometry()
self.rate = rospy.Rate(10)
#Callback function implementing the pose value received
def callback(self, data):
self.pose = data
self.pose.pose.pose.position.x = round(self.pose.pose.pose.position.x, 4)
self.pose.pose.pose.position.y = round(self.pose.pose.pose.position.y, 4)
yaw = getYaw(self)
def move2goal(self):
#goal_pose = Pose()
goal_pose = Odometry()
#print goal_pose
#goal_pose.pose.pose.position.x = input("Set your x goal: ")
# goal_pose.pose.pose.position.y = input("Set your y goal: ")
cur_pos = getCameraData()
current_x = cur_pos[0]
current_y = cur_pos[1]
yaw_camera= cur_pos[2]
#orientation = input("Set your final orientation: ")
distance_tolerance = input("Set your tolerance: ")
angle_abs = input("Set your angle: ")
#angle_tolerance = input("Set your angle tolerance: ")
print "Goal angle: "
print angle_abs
vel_msg = Twist()
yaw_odometry = getYaw(self)
print "yaw_odom: "
print yaw_odometry
print "yaw camera: "
print yaw_camera
#direction = atan2(goal_pose.pose.pose.position.y-self.pose.pose.pose.position.y, goal_pose.pose.pose.position.x-self.pose.pose.pose.position.x)
#direction = angle2pi(direction)
# print "direction:"
#print direction
difference = angle_abs - yaw_camera
print "difference: "
print difference
angle_user = yaw_odometry + difference
print "angle: "
print angle_user
angle_tolerance = 0.1
# sets the direction of turn
"""
if abs(angle_user - yaw_camera) <= math.pi:
if angle_user - yaw_camera > 0:
clockwise = True
else:
clockwise = False
if abs(angle_user - yaw_camera) > math.pi:
if angle_user - yaw_camera > 0:
clockwise = False
else:
clockwise = True
"""
if abs(angle_user) <= math.pi:
if yaw_camera < angle_user:
clockwise = False
else:
clockwise = True
if abs(angle_user) >= math.pi:
if yaw_camera < angle_user
clockwise = False
else:
clockwise = True
#Turns the robot
while abs(yaw_odometry - angle_user) >= angle_tolerance:
#angular velocity in the z-axis:
vel_msg.angular.x = 0
vel_msg.angular.y = 0
v_z = 4 * (angle_user - yaw_odometry)
if abs(v_z) > 1:
v_z = 1
if clockwise == True:
v_z = -abs(v_z)
else:
v_z = abs(v_z)
vel_msg.angular.z = v_z
print "Yaw_Odometry:"
print yaw_odometry
print "angle:"
print angle_user
yaw_odometry = getYaw(self)
self.velocity_publisher.publish(vel_msg)
self.rate.sleep()
print yaw_odometry
vel_msg.angular.z = 0
self.velocity_publisher.publish(vel_msg)
sleep(1)
cur_pos = getCameraData()
yaw_camera = cur_pos[2]
yaw_camera = angle2pi(yaw_camera)
print yaw_camera
sleep(1)
while abs(angle_abs - yaw_camera) > 0.05:
new_turn = angle_abs - yaw_camera
angle_user = yaw_odometry + new_turn
"""clockwise = False ###old way of determining whether clockwise or counterclockwise
if abs(angle_user - yaw_camera) <= math.pi:
if angle_user - yaw_camera > 0:
clockwise = True
else:
clockwise = False
if abs(angle_user - yaw_camera) > math.pi:
if angle_user - yaw_camera > 0:
clockwise = False
else:
clockwise = True"""
if abs(angle_user) <= math.pi:
if yaw_camera < angle_user:
clockwise = False
else:
clockwise = True
if abs(angle_user) >= math.pi:
if yaw_camera < angle_user:
clockwise = False
else:
clockwise = True
while abs(yaw_odometry - angle_user) >= angle_tolerance:
#angular velocity in the z-axis:
vel_msg.angular.x = 0
vel_msg.angular.y = 0
v_z = 4 * (angle_user - yaw_odometry)
if abs(v_z) > 1:
v_z = 0.5
if clockwise == True:
v_z = -abs(v_z)
else:
v_z = abs(v_z)
vel_msg.angular.z = v_z
print "Yaw_Odometry:"
print yaw_odometry
print "angle:"
print angle_user
yaw_odometry = getYaw(self)
self.velocity_publisher.publish(vel_msg)
self.rate.sleep()
print yaw_odometry
vel_msg.angular.z = 0
self.velocity_publisher.publish(vel_msg)
sleep(1)
cur_pos = getCameraData()
yaw_camera = cur_pos[2]
yaw_camera = angle2pi(yaw_camera)
print yaw_camera
sleep(1)
gotoPosition(goal_pose.pose.pose.position.x, goal_pose.pose.pose.position.y, distance_tolerance)
"""target_distance = math.sqrt((goal_pose.pose.pose.position.x-current_x)**2 + (goal_pose.pose.pose.position.y-current_y)**2)
current_distance = 0
while (target_distance - current_distance >= distance_tolerance):
#Proportional Controller
#linear velocity in the x-axis:
v_x = 1.5 * sqrt(pow((goal_pose.pose.pose.position.x - current_x), 2) + pow((goal_pose.pose.pose.position.y - current_y), 2))
if(v_x > 0.5):
v_x = 0.5
vel_msg.linear.x = v_x
vel_msg.linear.y = 0
vel_msg.linear.z = 0
print "target_distance:"
print target_distance
print "current_distance:"
print current_distance
#target_distance = math.sqrt((goal_pose.pose.pose.position.x)**2 + (goal_pose.pose.pose.position.y)**2)
self_data = getCameraData()
current_distance = math.sqrt((self_data[0]-current_x)**2 + (self_data[1]-current_y)**2)
#Publishing our vel_msg
self.velocity_publisher.publish(vel_msg)
self.rate.sleep()
#Stopping our robot after the movement is over
vel_msg.linear.x = 0
#vel_msg.angular.z = orientation - yaw
#(temporary for testing purposes)
# vel_msg.angular.z = 0
self.velocity_publisher.publish(vel_msg)"""
rospy.spin()
if __name__ == '__main__':
while not rospy.is_shutdown():
#Testing our function
x = gotoXY()
x.move2goal()