Skip to content

Implements the core functionality for the Silvereye project, including monthly, quarterly, and yearly averages for selected ANUClimate variables, on a given latitude-longitude grid.

Notifications You must be signed in to change notification settings

ausecocloud/silvereye_wps_demo

Repository files navigation

README.md

Introduction

This is a prototype for the "SilverEye" project. It implements core functions that calculate the basic functionality. This program performs the following tasks:

  • It reads the ANU Climate variables (temp_max, temp_min, rainfall, solar_radiation, vapour_pressure) from remote databases, via PyDap.
  • It works on specified latitude and longitude rectangular regions (within Australia),
  • It produces monthly, quarterly, yearly average time reductions, as follows:
    • Monthly Averages (Means)
      • Means for one year, one month
      • Means for one year, all months
      • Means for one year, and a range of months
      • Means for a range of years, all months
      • Means for a range of years, one month of each year
      • Means for year-month to year-month interval
    • Quarterly Averages (Means)
      • Means for one year, one quarter
      • Means for one year, all quarters
      • Means for a range of years, all quarters
      • Means for a range of years, one quarter of each year
    • Yearly Averages (Means)
      • Means for one year
      • Means for a range of years
    • Reports are generated in CSV file format.
  • The WPS standard is used as an interface to the core functions, each of which is implemented as a WPS process.
  • These core functions are wrapped into a web application using the Pyramid framework.
  • The whole application is additionally wrapped into a docker container.

Technology Dependencies

The project currently relies on the following technologies:

  • Python 3.7.*
  • NumPy: NDArrays with mean calculations
  • PyDap: for connecting to remote ANU Climate files
  • Requests: required by PyDap
  • PyWPS: Python's implementation of the WPS standard (for processes, inputs and outputs)
  • Pyramid: Python framework for web applications
  • Docker: for wrapping the webapp into a stand-alone container

Preparation

Requires Python 3.7.x.

For GitHub:

  • Do a Fork and a Pull request.
  • Clone the forked project.

Prepare and activate a virtual environment:

cd silvereye_wps_demo
python -m venv env
source env/bin/activate

Install dependencies and set up project:

pip install -e .
python setup.py develop

To Execute

To run the application stand-alone (for development):

cd silvereye_wps_demo
env/bin/pserve development.ini --reload

To run the application as a docker container:

docker-compose build
docker-compose up

To Invoke

The following processes have been implemented:

  • mean_one_year_all_months
  • mean_one_year_all_quarters
  • mean_one_year_month_range
  • mean_one_year_one_month
  • mean_one_year_one_quarter
  • mean_years_all_months
  • mean_years_all_quarters
  • mean_years_one_month
  • mean_years_one_quarter
  • mean_one_year
  • mean_years
  • mean_year_month_range

Inputs depend on each process, and include:

  • year (int), or range of years, with values between 1970 and 2014.
  • month (int), or range of months, with values between 1 and 12.
  • year-month to year-month, within the ranges specified above.
  • quarter (int), with values between 1 and 4.
  • latitude pair (floats) (min, max), with values in the range -43.735:-9.005
  • longitude pair (floats) (min, max), with values in the range 112.905:153.995

For specific inputs to each process, check the files under:

src/silvereye_wps_demo/processes/mean_*.py

Sample Invocation:

Invoke it with Insomnia or with Postman.

Endpoint: POST http://0.0.0.0:6543/wps

Headers:

  • Content-Type: "application/xml"
  • Accept: "application/xml"

Payload (Body):

<?xml version="1.0" encoding="UTF-8"?>
<wps:Execute 
	service="WPS"
	version="1.0.0"
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xmlns="http://www.opengis.net/wps/1.0.0"
	xmlns:wps="http://www.opengis.net/wps/1.0.0"
	xmlns:ows="http://www.opengis.net/ows/1.1"
	xsi:schemaLocation="http://www.opengis.net/wps/1.0.0  http://schemas.opengis.net/wps/1.0.0/wpsAll.xsd">
	<ows:Identifier>mean_years_one_quarter</ows:Identifier>
	<wps:DataInputs>
		<wps:Input>
			<ows:Identifier>variables</ows:Identifier>
			<wps:Data>
				<wps:LiteralData>rainfall</wps:LiteralData>
			</wps:Data>
		</wps:Input>
		<wps:Input>
			<ows:Identifier>year_min</ows:Identifier>
			<wps:Data>
				<wps:LiteralData>1990</wps:LiteralData>
			</wps:Data>
		</wps:Input>
		<wps:Input>
			<ows:Identifier>year_max</ows:Identifier>
			<wps:Data>
				<wps:LiteralData>1991</wps:LiteralData>
			</wps:Data>
		</wps:Input>
		<wps:Input>
			<ows:Identifier>quarter</ows:Identifier>
			<wps:Data>
				<wps:LiteralData>3</wps:LiteralData>
			</wps:Data>
		</wps:Input>
		<wps:Input>
			<ows:Identifier>lat_min</ows:Identifier>
			<wps:Data>
				<wps:LiteralData>-28.12</wps:LiteralData>
			</wps:Data>
		</wps:Input>
		<wps:Input>
			<ows:Identifier>lat_max</ows:Identifier>
			<wps:Data>
				<wps:LiteralData>-27.94</wps:LiteralData>
			</wps:Data>
		</wps:Input>
		<wps:Input>
			<ows:Identifier>lon_min</ows:Identifier>
			<wps:Data>
				<wps:LiteralData>152.85</wps:LiteralData>
			</wps:Data>
		</wps:Input>
		<wps:Input>
			<ows:Identifier>lon_max</ows:Identifier>
			<wps:Data>
				<wps:LiteralData>153.25</wps:LiteralData>
			</wps:Data>
		</wps:Input>
	</wps:DataInputs>
	<wps:ResponseForm>
		<wps:ResponseDocument lineage="true" 
		        storeExecuteResponse="true" status="true">
			<wps:Output asReference="false">
				<ows:Identifier>result</ows:Identifier>
			</wps:Output>
		</wps:ResponseDocument>
	</wps:ResponseForm>
</wps:Execute>

Output

If running from a docker container, the output is written to the following folders:

  • volumes/wps_workdir/outputs contains out.csv files
  • volumes/wps_log/pywps-logs.sqlite3 contains a sqlite3 database with the logs.

Troubleshooting

If the above installation of dependencies fails, or misses something, try the following:

Install dependencies:

pip install -e .

Install dependencies for development:

pip install -r ".[dev]"

About

Implements the core functionality for the Silvereye project, including monthly, quarterly, and yearly averages for selected ANUClimate variables, on a given latitude-longitude grid.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages