Skip to content

Commit

Permalink
Sagar Kaushik: Fix typo in contribution guide (#1322)
Browse files Browse the repository at this point in the history
  • Loading branch information
Github Actions committed Nov 26, 2021
1 parent 715f575 commit 3af0c5f
Show file tree
Hide file tree
Showing 69 changed files with 1,236 additions and 2,232 deletions.
Binary file not shown.
Binary file not shown.
Binary file modified development/_images/sphx_glr_example_inspect_predictions_001.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_inspect_predictions_thumb.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_pandas_train_test_001.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_regression_001.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified development/_images/sphx_glr_example_regression_thumb.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
160 changes: 35 additions & 125 deletions development/_sources/examples/20_basic/example_classification.rst.txt

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
Expand Up @@ -157,7 +157,7 @@ View the models found by auto-sklearn
rank ensemble_weight type cost duration
model_id
2 1 1.0 random_forest 0.447294 3.100555
2 1 1.0 random_forest 0.447294 4.436343
Expand Down Expand Up @@ -265,7 +265,7 @@ Get the Score of the final ensemble
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 0 minutes 12.020 seconds)
**Total running time of the script:** ( 0 minutes 16.045 seconds)


.. _sphx_glr_download_examples_20_basic_example_multilabel_classification.py:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -122,10 +122,9 @@ View the models found by auto-sklearn

.. code-block:: none
rank ensemble_weight type cost duration
model_id
19 1 0.8 gaussian_process 4.875276e-08 2.043076
27 2 0.2 gaussian_process 7.436288e-08 11.404179
rank ensemble_weight type cost duration
model_id
14 1 1.0 gaussian_process 0.000033 4.520127
Expand All @@ -152,14 +151,7 @@ Print the final ensemble constructed by auto-sklearn

.. code-block:: none
[(0.800000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'fast_ica', 'regressor:__choice__': 'gaussian_process', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:fast_ica:algorithm': 'deflation', 'feature_preprocessor:fast_ica:fun': 'exp', 'feature_preprocessor:fast_ica:whiten': 'True', 'regressor:gaussian_process:alpha': 7.189405483522553e-14, 'regressor:gaussian_process:thetaL': 2.0661476131515158e-08, 'regressor:gaussian_process:thetaU': 18.582753656416884, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.03430109692673908, 'feature_preprocessor:fast_ica:n_components': 321},
dataset_properties={
'task': 5,
'sparse': False,
'multioutput': True,
'target_type': 'regression',
'signed': False})),
(0.200000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'fast_ica', 'regressor:__choice__': 'gaussian_process', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:fast_ica:algorithm': 'deflation', 'feature_preprocessor:fast_ica:fun': 'cube', 'feature_preprocessor:fast_ica:whiten': 'False', 'regressor:gaussian_process:alpha': 1.1020473254006217e-14, 'regressor:gaussian_process:thetaL': 5.983101904824557e-07, 'regressor:gaussian_process:thetaU': 21285.10502294252},
[(1.000000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'feature_agglomeration', 'regressor:__choice__': 'gaussian_process', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'power_transformer', 'feature_preprocessor:feature_agglomeration:affinity': 'manhattan', 'feature_preprocessor:feature_agglomeration:linkage': 'average', 'feature_preprocessor:feature_agglomeration:n_clusters': 365, 'feature_preprocessor:feature_agglomeration:pooling_func': 'mean', 'regressor:gaussian_process:alpha': 0.0001892420474677165, 'regressor:gaussian_process:thetaL': 1.7549152191973897e-09, 'regressor:gaussian_process:thetaU': 2227.384462976473},
dataset_properties={
'task': 5,
'sparse': False,
Expand Down Expand Up @@ -194,7 +186,7 @@ Get the Score of the final ensemble

.. code-block:: none
R2 score: 0.9999999523607747
R2 score: 0.999962998298447
Expand Down Expand Up @@ -417,7 +409,7 @@ Get the configuration space
.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 1 minutes 58.364 seconds)
**Total running time of the script:** ( 1 minutes 56.999 seconds)


.. _sphx_glr_download_examples_20_basic_example_multioutput_regression.py:
Expand Down
34 changes: 21 additions & 13 deletions development/_sources/examples/20_basic/example_regression.rst.txt
Original file line number Diff line number Diff line change
Expand Up @@ -119,12 +119,13 @@ View the models found by auto-sklearn

.. code-block:: none
rank ensemble_weight type cost duration
model_id
25 1 0.44 sgd 0.436679 0.545973
6 2 0.34 ard_regression 0.455042 0.554689
39 3 0.18 ard_regression 0.474807 0.557886
7 4 0.04 gradient_boosting 0.518673 0.985965
rank ensemble_weight type cost duration
model_id
25 1 0.46 sgd 0.436679 0.850374
6 2 0.32 ard_regression 0.455042 0.852782
27 3 0.14 ard_regression 0.462249 0.827338
11 4 0.02 random_forest 0.507400 11.182383
7 5 0.06 gradient_boosting 0.518673 1.586598
Expand All @@ -151,28 +152,35 @@ Print the final ensemble constructed by auto-sklearn

.. code-block:: none
[(0.440000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'regressor:__choice__': 'sgd', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:polynomial:degree': 3, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False', 'regressor:sgd:alpha': 0.0006517033225329654, 'regressor:sgd:average': 'False', 'regressor:sgd:fit_intercept': 'True', 'regressor:sgd:learning_rate': 'invscaling', 'regressor:sgd:loss': 'epsilon_insensitive', 'regressor:sgd:penalty': 'elasticnet', 'regressor:sgd:tol': 0.002431731981071206, 'regressor:sgd:epsilon': 0.012150149892783745, 'regressor:sgd:eta0': 0.016444224834275295, 'regressor:sgd:l1_ratio': 1.7462342366289323e-09, 'regressor:sgd:power_t': 0.21521743568582094},
[(0.460000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'regressor:__choice__': 'sgd', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:polynomial:degree': 3, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False', 'regressor:sgd:alpha': 0.0006517033225329654, 'regressor:sgd:average': 'False', 'regressor:sgd:fit_intercept': 'True', 'regressor:sgd:learning_rate': 'invscaling', 'regressor:sgd:loss': 'epsilon_insensitive', 'regressor:sgd:penalty': 'elasticnet', 'regressor:sgd:tol': 0.002431731981071206, 'regressor:sgd:epsilon': 0.012150149892783745, 'regressor:sgd:eta0': 0.016444224834275295, 'regressor:sgd:l1_ratio': 1.7462342366289323e-09, 'regressor:sgd:power_t': 0.21521743568582094},
dataset_properties={
'task': 4,
'sparse': False,
'multioutput': False,
'target_type': 'regression',
'signed': False})),
(0.340000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'regressor:__choice__': 'ard_regression', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'False', 'regressor:ard_regression:alpha_1': 0.0003701926442639788, 'regressor:ard_regression:alpha_2': 2.2118001735899097e-07, 'regressor:ard_regression:fit_intercept': 'True', 'regressor:ard_regression:lambda_1': 1.2037591637980971e-06, 'regressor:ard_regression:lambda_2': 4.358378124977852e-09, 'regressor:ard_regression:n_iter': 300, 'regressor:ard_regression:threshold_lambda': 1136.5286041327277, 'regressor:ard_regression:tol': 0.021944240404849075},
(0.320000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'regressor:__choice__': 'ard_regression', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'False', 'regressor:ard_regression:alpha_1': 0.0003701926442639788, 'regressor:ard_regression:alpha_2': 2.2118001735899097e-07, 'regressor:ard_regression:fit_intercept': 'True', 'regressor:ard_regression:lambda_1': 1.2037591637980971e-06, 'regressor:ard_regression:lambda_2': 4.358378124977852e-09, 'regressor:ard_regression:n_iter': 300, 'regressor:ard_regression:threshold_lambda': 1136.5286041327277, 'regressor:ard_regression:tol': 0.021944240404849075},
dataset_properties={
'task': 4,
'sparse': False,
'multioutput': False,
'target_type': 'regression',
'signed': False})),
(0.180000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'fast_ica', 'regressor:__choice__': 'ard_regression', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:fast_ica:algorithm': 'parallel', 'feature_preprocessor:fast_ica:fun': 'logcosh', 'feature_preprocessor:fast_ica:whiten': 'False', 'regressor:ard_regression:alpha_1': 0.0005012365297609799, 'regressor:ard_regression:alpha_2': 3.025360750168211e-08, 'regressor:ard_regression:fit_intercept': 'True', 'regressor:ard_regression:lambda_1': 4.9749646614525684e-05, 'regressor:ard_regression:lambda_2': 3.2368037115065363e-10, 'regressor:ard_regression:n_iter': 300, 'regressor:ard_regression:threshold_lambda': 18669.665899307194, 'regressor:ard_regression:tol': 0.0012624032013298571},
(0.140000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_rates_regression', 'regressor:__choice__': 'ard_regression', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:select_rates_regression:alpha': 0.3621762718897781, 'feature_preprocessor:select_rates_regression:mode': 'fwe', 'feature_preprocessor:select_rates_regression:score_func': 'f_regression', 'regressor:ard_regression:alpha_1': 2.7664515192592053e-05, 'regressor:ard_regression:alpha_2': 9.504988116581138e-07, 'regressor:ard_regression:fit_intercept': 'True', 'regressor:ard_regression:lambda_1': 6.50650698230178e-09, 'regressor:ard_regression:lambda_2': 4.238533890074848e-07, 'regressor:ard_regression:n_iter': 300, 'regressor:ard_regression:threshold_lambda': 78251.58542976103, 'regressor:ard_regression:tol': 0.0007301343236220855, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0001745391328519669, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.8057830372269097, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.24982831110057324},
dataset_properties={
'task': 4,
'sparse': False,
'multioutput': False,
'target_type': 'regression',
'signed': False})),
(0.040000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'regressor:__choice__': 'gradient_boosting', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'regressor:gradient_boosting:early_stop': 'off', 'regressor:gradient_boosting:l2_regularization': 1.8428972335335263e-10, 'regressor:gradient_boosting:learning_rate': 0.012607824914758717, 'regressor:gradient_boosting:loss': 'least_squares', 'regressor:gradient_boosting:max_bins': 255, 'regressor:gradient_boosting:max_depth': 'None', 'regressor:gradient_boosting:max_leaf_nodes': 10, 'regressor:gradient_boosting:min_samples_leaf': 8, 'regressor:gradient_boosting:scoring': 'loss', 'regressor:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 952, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'},
(0.060000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'regressor:__choice__': 'gradient_boosting', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'regressor:gradient_boosting:early_stop': 'off', 'regressor:gradient_boosting:l2_regularization': 1.8428972335335263e-10, 'regressor:gradient_boosting:learning_rate': 0.012607824914758717, 'regressor:gradient_boosting:loss': 'least_squares', 'regressor:gradient_boosting:max_bins': 255, 'regressor:gradient_boosting:max_depth': 'None', 'regressor:gradient_boosting:max_leaf_nodes': 10, 'regressor:gradient_boosting:min_samples_leaf': 8, 'regressor:gradient_boosting:scoring': 'loss', 'regressor:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 952, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'},
dataset_properties={
'task': 4,
'sparse': False,
'multioutput': False,
'target_type': 'regression',
'signed': False})),
(0.020000, SimpleRegressionPipeline({'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'regressor:__choice__': 'random_forest', 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'True', 'regressor:random_forest:bootstrap': 'False', 'regressor:random_forest:criterion': 'mae', 'regressor:random_forest:max_depth': 'None', 'regressor:random_forest:max_features': 0.6277363920171745, 'regressor:random_forest:max_leaf_nodes': 'None', 'regressor:random_forest:min_impurity_decrease': 0.0, 'regressor:random_forest:min_samples_leaf': 6, 'regressor:random_forest:min_samples_split': 15, 'regressor:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0010413452644415357},
dataset_properties={
'task': 4,
'sparse': False,
Expand Down Expand Up @@ -213,8 +221,8 @@ predicting the data mean has an R2 score of 0.

.. code-block:: none
Train R2 score: 0.5855373845454157
Test R2 score: 0.39879073225079487
Train R2 score: 0.5944780427522034
Test R2 score: 0.3959585042866587
Expand Down Expand Up @@ -259,7 +267,7 @@ the true value).

.. rst-class:: sphx-glr-timing

**Total running time of the script:** ( 1 minutes 56.146 seconds)
**Total running time of the script:** ( 1 minutes 54.910 seconds)


.. _sphx_glr_download_examples_20_basic_example_regression.py:
Expand Down
Loading

0 comments on commit 3af0c5f

Please sign in to comment.