forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
20 changed files
with
3,517 additions
and
20 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
237 changes: 237 additions & 0 deletions
237
domain_adaptation/datasets/download_and_convert_mnist_m.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,237 @@ | ||
# Copyright 2017 Google Inc. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
r"""Downloads and converts MNIST-M data to TFRecords of TF-Example protos. | ||
This module downloads the MNIST-M data, uncompresses it, reads the files | ||
that make up the MNIST-M data and creates two TFRecord datasets: one for train | ||
and one for test. Each TFRecord dataset is comprised of a set of TF-Example | ||
protocol buffers, each of which contain a single image and label. | ||
The script should take about a minute to run. | ||
""" | ||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import os | ||
import random | ||
import sys | ||
|
||
# Dependency imports | ||
import numpy as np | ||
from six.moves import urllib | ||
import tensorflow as tf | ||
|
||
from slim.datasets import dataset_utils | ||
|
||
tf.app.flags.DEFINE_string( | ||
'dataset_dir', None, | ||
'The directory where the output TFRecords and temporary files are saved.') | ||
|
||
FLAGS = tf.app.flags.FLAGS | ||
|
||
_IMAGE_SIZE = 32 | ||
_NUM_CHANNELS = 3 | ||
|
||
# The number of images in the training set. | ||
_NUM_TRAIN_SAMPLES = 59001 | ||
|
||
# The number of images to be kept from the training set for the validation set. | ||
_NUM_VALIDATION = 1000 | ||
|
||
# The number of images in the test set. | ||
_NUM_TEST_SAMPLES = 9001 | ||
|
||
# Seed for repeatability. | ||
_RANDOM_SEED = 0 | ||
|
||
# The names of the classes. | ||
_CLASS_NAMES = [ | ||
'zero', | ||
'one', | ||
'two', | ||
'three', | ||
'four', | ||
'five', | ||
'size', | ||
'seven', | ||
'eight', | ||
'nine', | ||
] | ||
|
||
|
||
class ImageReader(object): | ||
"""Helper class that provides TensorFlow image coding utilities.""" | ||
|
||
def __init__(self): | ||
# Initializes function that decodes RGB PNG data. | ||
self._decode_png_data = tf.placeholder(dtype=tf.string) | ||
self._decode_png = tf.image.decode_png(self._decode_png_data, channels=3) | ||
|
||
def read_image_dims(self, sess, image_data): | ||
image = self.decode_png(sess, image_data) | ||
return image.shape[0], image.shape[1] | ||
|
||
def decode_png(self, sess, image_data): | ||
image = sess.run( | ||
self._decode_png, feed_dict={self._decode_png_data: image_data}) | ||
assert len(image.shape) == 3 | ||
assert image.shape[2] == 3 | ||
return image | ||
|
||
|
||
def _convert_dataset(split_name, filenames, filename_to_class_id, dataset_dir): | ||
"""Converts the given filenames to a TFRecord dataset. | ||
Args: | ||
split_name: The name of the dataset, either 'train' or 'valid'. | ||
filenames: A list of absolute paths to png images. | ||
filename_to_class_id: A dictionary from filenames (strings) to class ids | ||
(integers). | ||
dataset_dir: The directory where the converted datasets are stored. | ||
""" | ||
print('Converting the {} split.'.format(split_name)) | ||
# Train and validation splits are both in the train directory. | ||
if split_name in ['train', 'valid']: | ||
png_directory = os.path.join(dataset_dir, 'mnist_m', 'mnist_m_train') | ||
elif split_name == 'test': | ||
png_directory = os.path.join(dataset_dir, 'mnist_m', 'mnist_m_test') | ||
|
||
with tf.Graph().as_default(): | ||
image_reader = ImageReader() | ||
|
||
with tf.Session('') as sess: | ||
output_filename = _get_output_filename(dataset_dir, split_name) | ||
|
||
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer: | ||
for filename in filenames: | ||
# Read the filename: | ||
image_data = tf.gfile.FastGFile( | ||
os.path.join(png_directory, filename), 'r').read() | ||
height, width = image_reader.read_image_dims(sess, image_data) | ||
|
||
class_id = filename_to_class_id[filename] | ||
example = dataset_utils.image_to_tfexample(image_data, 'png', height, | ||
width, class_id) | ||
tfrecord_writer.write(example.SerializeToString()) | ||
|
||
sys.stdout.write('\n') | ||
sys.stdout.flush() | ||
|
||
|
||
def _extract_labels(label_filename): | ||
"""Extract the labels into a dict of filenames to int labels. | ||
Args: | ||
labels_filename: The filename of the MNIST-M labels. | ||
Returns: | ||
A dictionary of filenames to int labels. | ||
""" | ||
print('Extracting labels from: ', label_filename) | ||
label_file = tf.gfile.FastGFile(label_filename, 'r').readlines() | ||
label_lines = [line.rstrip('\n').split() for line in label_file] | ||
labels = {} | ||
for line in label_lines: | ||
assert len(line) == 2 | ||
labels[line[0]] = int(line[1]) | ||
return labels | ||
|
||
|
||
def _get_output_filename(dataset_dir, split_name): | ||
"""Creates the output filename. | ||
Args: | ||
dataset_dir: The directory where the temporary files are stored. | ||
split_name: The name of the train/test split. | ||
Returns: | ||
An absolute file path. | ||
""" | ||
return '%s/mnist_m_%s.tfrecord' % (dataset_dir, split_name) | ||
|
||
|
||
def _get_filenames(dataset_dir): | ||
"""Returns a list of filenames and inferred class names. | ||
Args: | ||
dataset_dir: A directory containing a set PNG encoded MNIST-M images. | ||
Returns: | ||
A list of image file paths, relative to `dataset_dir`. | ||
""" | ||
photo_filenames = [] | ||
for filename in os.listdir(dataset_dir): | ||
photo_filenames.append(filename) | ||
return photo_filenames | ||
|
||
|
||
def run(dataset_dir): | ||
"""Runs the download and conversion operation. | ||
Args: | ||
dataset_dir: The dataset directory where the dataset is stored. | ||
""" | ||
if not tf.gfile.Exists(dataset_dir): | ||
tf.gfile.MakeDirs(dataset_dir) | ||
|
||
train_filename = _get_output_filename(dataset_dir, 'train') | ||
testing_filename = _get_output_filename(dataset_dir, 'test') | ||
|
||
if tf.gfile.Exists(train_filename) and tf.gfile.Exists(testing_filename): | ||
print('Dataset files already exist. Exiting without re-creating them.') | ||
return | ||
|
||
# TODO(konstantinos): Add download and cleanup functionality | ||
|
||
train_validation_filenames = _get_filenames( | ||
os.path.join(dataset_dir, 'mnist_m', 'mnist_m_train')) | ||
test_filenames = _get_filenames( | ||
os.path.join(dataset_dir, 'mnist_m', 'mnist_m_test')) | ||
|
||
# Divide into train and validation: | ||
random.seed(_RANDOM_SEED) | ||
random.shuffle(train_validation_filenames) | ||
train_filenames = train_validation_filenames[_NUM_VALIDATION:] | ||
validation_filenames = train_validation_filenames[:_NUM_VALIDATION] | ||
|
||
train_validation_filenames_to_class_ids = _extract_labels( | ||
os.path.join(dataset_dir, 'mnist_m', 'mnist_m_train_labels.txt')) | ||
test_filenames_to_class_ids = _extract_labels( | ||
os.path.join(dataset_dir, 'mnist_m', 'mnist_m_test_labels.txt')) | ||
|
||
# Convert the train, validation, and test sets. | ||
_convert_dataset('train', train_filenames, | ||
train_validation_filenames_to_class_ids, dataset_dir) | ||
_convert_dataset('valid', validation_filenames, | ||
train_validation_filenames_to_class_ids, dataset_dir) | ||
_convert_dataset('test', test_filenames, test_filenames_to_class_ids, | ||
dataset_dir) | ||
|
||
# Finally, write the labels file: | ||
labels_to_class_names = dict(zip(range(len(_CLASS_NAMES)), _CLASS_NAMES)) | ||
dataset_utils.write_label_file(labels_to_class_names, dataset_dir) | ||
|
||
print('\nFinished converting the MNIST-M dataset!') | ||
|
||
|
||
def main(_): | ||
assert FLAGS.dataset_dir | ||
run(FLAGS.dataset_dir) | ||
|
||
|
||
if __name__ == '__main__': | ||
tf.app.run() |
Oops, something went wrong.