-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_fig7_top_entities.py
302 lines (241 loc) · 14.7 KB
/
plot_fig7_top_entities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#!/usr/bin/env python
# -*- coding: utf-8 -*-
""" Plot ranks of top 100 users in the cyberbullying dataset
Usage: python plot_fig4_top_entities.py
Input data files: ../data/[app_name]_out/complete_user_[app_name].txt, ../data/[app_name]_out/user_[app_name]_all.txt
Time: ~8M
"""
import sys, os, platform
from collections import defaultdict
from datetime import datetime
import numpy as np
from scipy.stats import entropy, kendalltau
import matplotlib as mpl
if platform.system() == 'Linux':
mpl.use('Agg') # no UI backend
import matplotlib.pyplot as plt
sys.path.append(os.path.join(os.path.dirname(__file__), '../'))
from utils.helper import Timer, melt_snowflake
from utils.metrics import mean_absolute_percentage_error as mape
cm = plt.cm.get_cmap('RdBu')
def write_to_file(filepath, header, datalist):
with open(filepath, 'w') as fout:
for user_idx, user_id in enumerate(header):
fout.write('{0}\t{1}\t{2}\n'.format(user_id, sum(datalist[user_idx]), ','.join(map(str, datalist[user_idx]))))
def read_from_file(filepath, dtype=0):
datalist = []
with open(filepath, 'r') as fin:
for line in fin:
user_id, total, records = line.rstrip().split('\t')
if dtype == 0:
records = list(map(int, records.split(',')))
else:
records = list(map(float, records.split(',')))
datalist.append(records)
return datalist
def main():
timer = Timer()
timer.start()
app_name = 'cyberbullying'
hours_in_day = 24
minutes_in_hour = 60
seconds_in_minute = 60
ms_in_second = 1000
num_bins = 100
width = ms_in_second // num_bins
num_top = 500
fig, axes = plt.subplots(1, 2, figsize=(7.2, 4.8), gridspec_kw={'width_ratios': [2.75, 3]})
axes = axes.ravel()
confusion_sampling_rate = np.load('../data/{0}_out/{0}_confusion_sampling_rate.npy'.format(app_name))
confusion_sampling_rate = np.nan_to_num(confusion_sampling_rate)
load_external_data = True
if not load_external_data:
sample_entity_stats = defaultdict(int)
with open('../data/{0}_out/user_{0}_all.txt'.format(app_name), 'r') as fin:
for line in fin:
split_line = line.rstrip().split(',')
sample_entity_stats[split_line[1]] += 1
# == == == == == == Part 2: Plot entity rank == == == == == == #
print('>>> found top {0} users in sample set...'.format(num_top))
sample_top = [kv[0] for kv in sorted(sample_entity_stats.items(), key=lambda x: x[1], reverse=True)[:num_top]]
# == == == == == == Part 1: Find tweets appearing in complete set == == == == == == #
complete_post_lists_hour = [[0] * hours_in_day for _ in range(num_top)]
complete_post_lists_min = [[0] * minutes_in_hour for _ in range(num_top)]
complete_post_lists_sec = [[0] * seconds_in_minute for _ in range(num_top)]
complete_post_lists_10ms = [[0] * num_bins for _ in range(num_top)]
complete_entity_stats = defaultdict(int)
with open('../data/{0}_out/complete_user_{0}.txt'.format(app_name), 'r') as fin:
for line in fin:
split_line = line.rstrip().split(',')
user_id = split_line[1]
if user_id in sample_top:
complete_entity_stats[user_id] += 1
user_idx = sample_top.index(user_id)
tweet_id = split_line[0]
timestamp_ms = melt_snowflake(tweet_id)[0]
dt_obj = datetime.utcfromtimestamp(timestamp_ms // 1000)
hour = dt_obj.hour
minute = dt_obj.minute
second = dt_obj.second
millisec = timestamp_ms % 1000
ms_idx = (millisec-7) // width if millisec >= 7 else (1000 + millisec-7) // width
complete_post_lists_hour[user_idx][hour] += 1
complete_post_lists_min[user_idx][minute] += 1
complete_post_lists_sec[user_idx][second] += 1
complete_post_lists_10ms[user_idx][ms_idx] += 1
write_to_file('./complete_post_lists_hour.txt', sample_top, complete_post_lists_hour)
write_to_file('./complete_post_lists_min.txt', sample_top, complete_post_lists_min)
write_to_file('./complete_post_lists_sec.txt', sample_top, complete_post_lists_sec)
write_to_file('./complete_post_lists_10ms.txt', sample_top, complete_post_lists_10ms)
print('>>> finish dumping complete lists...')
timer.stop()
# == == == == == == Part 2: Find appearing tweets in sample set == == == == == == #
sample_post_lists_hour = [[0] * hours_in_day for _ in range(num_top)]
sample_post_lists_min = [[0] * minutes_in_hour for _ in range(num_top)]
sample_post_lists_sec = [[0] * seconds_in_minute for _ in range(num_top)]
sample_post_lists_10ms = [[0] * num_bins for _ in range(num_top)]
estimated_post_lists_hour = [[0] * hours_in_day for _ in range(num_top)]
estimated_post_lists_min = [[0] * minutes_in_hour for _ in range(num_top)]
estimated_post_lists_sec = [[0] * seconds_in_minute for _ in range(num_top)]
estimated_post_lists_10ms = [[0] * num_bins for _ in range(num_top)]
hourly_conversion = np.mean(confusion_sampling_rate, axis=(1, 2, 3))
minutey_conversion = np.mean(confusion_sampling_rate, axis=(2, 3))
secondly_conversion = np.mean(confusion_sampling_rate, axis=(3))
with open('../data/{0}_out/user_{0}_all.txt'.format(app_name), 'r') as fin:
for line in fin:
split_line = line.rstrip().split(',')
user_id = split_line[1]
if user_id in sample_top:
user_idx = sample_top.index(user_id)
tweet_id = split_line[0]
timestamp_ms = melt_snowflake(tweet_id)[0]
dt_obj = datetime.utcfromtimestamp(timestamp_ms // 1000)
hour = dt_obj.hour
minute = dt_obj.minute
second = dt_obj.second
millisec = timestamp_ms % 1000
ms_idx = (millisec-7) // width if millisec >= 7 else (1000 + millisec-7) // width
sample_post_lists_hour[user_idx][hour] += 1
sample_post_lists_min[user_idx][minute] += 1
sample_post_lists_sec[user_idx][second] += 1
sample_post_lists_10ms[user_idx][ms_idx] += 1
estimated_post_lists_hour[user_idx][hour] += 1 / hourly_conversion[hour]
estimated_post_lists_min[user_idx][minute] += 1 / minutey_conversion[hour, minute]
estimated_post_lists_sec[user_idx][second] += 1 / secondly_conversion[hour, minute, second]
estimated_post_lists_10ms[user_idx][ms_idx] += 1 / confusion_sampling_rate[hour, minute, second, ms_idx]
write_to_file('./sample_post_lists_hour.txt', sample_top, sample_post_lists_hour)
write_to_file('./sample_post_lists_min.txt', sample_top, sample_post_lists_min)
write_to_file('./sample_post_lists_sec.txt', sample_top, sample_post_lists_sec)
write_to_file('./sample_post_lists_10ms.txt', sample_top, sample_post_lists_10ms)
write_to_file('./estimated_post_lists_hour.txt', sample_top, estimated_post_lists_hour)
write_to_file('./estimated_post_lists_min.txt', sample_top, estimated_post_lists_min)
write_to_file('./estimated_post_lists_sec.txt', sample_top, estimated_post_lists_sec)
write_to_file('./estimated_post_lists_10ms.txt', sample_top, estimated_post_lists_10ms)
print('>>> finish dumping sample and estimated lists...')
timer.stop()
else:
sample_top = []
complete_post_lists_hour = []
with open('./complete_post_lists_hour.txt', 'r') as fin:
for line in fin:
user_id, total, records = line.rstrip().split('\t')
sample_top.append(user_id)
records = list(map(int, records.split(',')))
complete_post_lists_hour.append(records)
sample_post_lists_hour = read_from_file('./sample_post_lists_hour.txt', dtype=0)
sample_post_lists_min = read_from_file('./sample_post_lists_min.txt', dtype=0)
sample_post_lists_sec = read_from_file('./sample_post_lists_sec.txt', dtype=0)
sample_post_lists_10ms = read_from_file('./sample_post_lists_10ms.txt', dtype=0)
estimated_post_lists_hour = read_from_file('./estimated_post_lists_hour.txt', dtype=1)
estimated_post_lists_min = read_from_file('./estimated_post_lists_min.txt', dtype=1)
estimated_post_lists_sec = read_from_file('./estimated_post_lists_sec.txt', dtype=1)
estimated_post_lists_10ms = read_from_file('./estimated_post_lists_10ms.txt', dtype=1)
# == == == == == == Part 3: Find the best estimation by comparing JS distance == == == == == == #
ret = {}
num_estimate_list = []
num_sample_list = []
num_complete_list = []
sample_entity_stats = {user_id: sum(sample_post_lists_hour[user_idx]) for user_idx, user_id in enumerate(sample_top)}
complete_entity_stats = {user_id: sum(complete_post_lists_hour[user_idx]) for user_idx, user_id in enumerate(sample_top)}
min_mat = np.array([], dtype=np.int64).reshape(0, 60)
sec_mat = np.array([], dtype=np.int64).reshape(0, 60)
for user_idx, user_id in enumerate(sample_top):
num_sample = sample_entity_stats[user_id]
num_complete = complete_entity_stats[user_id]
hour_entropy = entropy(sample_post_lists_hour[user_idx], base=hours_in_day)
min_entropy = entropy(sample_post_lists_min[user_idx], base=minutes_in_hour)
sec_entropy = entropy(sample_post_lists_sec[user_idx], base=seconds_in_minute)
ms10_entropy = entropy(sample_post_lists_10ms[user_idx], base=num_bins)
min_mat = np.vstack((min_mat, np.array(sample_post_lists_min[user_idx]).reshape(1, -1)))
sec_mat = np.vstack((sec_mat, np.array(sample_post_lists_sec[user_idx]).reshape(1, -1)))
min_entropy, min_entropy_idx = min((min_entropy, min_entropy_idx) for (min_entropy_idx, min_entropy) in enumerate([hour_entropy, min_entropy, sec_entropy]))
if ms10_entropy < 0.87:
min_entropy_idx = 3
else:
min_entropy_idx = 2
# # if they are all very large
# if min_entropy >= msly_entropy_benchmark:
# min_entropy_idx = 2
num_estimate = sum([estimated_post_lists_hour[user_idx], estimated_post_lists_min[user_idx],
estimated_post_lists_sec[user_idx], estimated_post_lists_10ms[user_idx]][min_entropy_idx])
num_estimate_list.append(num_estimate)
num_sample_list.append(num_sample)
num_complete_list.append(num_complete)
ret[user_id] = (num_sample, num_complete, num_estimate, min_entropy_idx)
np.savetxt('min_sample.npy', min_mat, delimiter=',')
np.savetxt('sec_sample.npy', sec_mat, delimiter=',')
rank_by_sample = [k for k, v in sorted(ret.items(), key=lambda item: item[1][0], reverse=True)]
rank_by_complete = [k for k, v in sorted(ret.items(), key=lambda item: item[1][1], reverse=True)]
rank_by_estimated = [k for k, v in sorted(ret.items(), key=lambda item: item[1][2], reverse=True)]
for user_idx, user_id in enumerate(sample_top):
print(user_id, ret[user_id][:-1], (rank_by_sample.index(user_id)+1, rank_by_complete.index(user_id)+1, rank_by_estimated.index(user_id)+1))
print(ret[user_id][0]/ret[user_id][1], mape(ret[user_id][1], ret[user_id][2])[0], rank_by_sample.index(user_id)-rank_by_complete.index(user_id), rank_by_estimated.index(user_id)-rank_by_complete.index(user_id))
print(np.sum(np.array(sample_post_lists_min[user_idx]) > 0), np.sum(np.array(sample_post_lists_sec[user_idx]) > 0), np.sum(np.array(sample_post_lists_10ms[user_idx]) > 0))
observed_top100 = rank_by_sample[:100]
complete_rank_for_observed_top100 = [rank_by_complete.index(uid) + 1 for uid in observed_top100]
user_sampling_rates_for_observed_top100 = [sample_entity_stats[uid] / complete_entity_stats[uid] for uid in observed_top100]
print('kendall tau for observed', kendalltau(range(1, 101), complete_rank_for_observed_top100))
estimated_top100 = rank_by_estimated[:100]
complete_rank_for_estimated_top100 = [rank_by_complete.index(uid) + 1 for uid in estimated_top100]
user_sampling_rates_for_estimated_top100 = [sample_entity_stats[uid] / complete_entity_stats[uid] for uid in estimated_top100]
print('kendall tau for estimated', kendalltau(range(1, 101), complete_rank_for_estimated_top100))
axes[0].scatter(range(1, 101), complete_rank_for_observed_top100, s=30,
c=user_sampling_rates_for_observed_top100,
edgecolors='gray',
vmin=0.2, vmax=0.9, cmap=cm, zorder=50)
axes[0].set_xlabel('observed rank in sample set', fontsize=13)
axes[0].set_ylabel('rank in complete set', fontsize=13)
axes[0].text(0.04, 0.9, r"kendall's $\tau$: {0:.4f}".format(kendalltau(range(1, 101), complete_rank_for_observed_top100)[0]),
ha='left', va='top', size=12, transform=axes[0].transAxes)
axes[0].plot([0, 100], [100, 100], color='gray', ls='--', lw=1)
axes[0].plot([100, 100], [0, 100], color='gray', ls='--', lw=1)
axes[0].plot([0, 100], [0, 100], color='gray', ls='--', lw=1)
axes[0].set_title('(a)', fontsize=13)
sc = axes[1].scatter(range(1, 101), complete_rank_for_estimated_top100, s=30,
c=user_sampling_rates_for_estimated_top100,
edgecolors='gray',
vmin=0.2, vmax=0.9, cmap=cm, zorder=50)
axes[1].set_xlabel('estimated rank in sample set', fontsize=13)
axes[1].plot([0, 100], [100, 100], color='gray', ls='--', lw=1)
axes[1].plot([100, 100], [0, 100], color='gray', ls='--', lw=1)
axes[1].plot([0, 100], [0, 100], color='gray', ls='--', lw=1)
axes[1].text(0.04, 0.9, r"kendall's $\tau$: {0:.4f}".format(kendalltau(range(1, 101), complete_rank_for_estimated_top100)[0]),
ha='left', va='top', size=12, transform=axes[1].transAxes)
axes[1].set_ylim(axes[0].get_ylim())
axes[1].set_title('(b)', fontsize=13)
cb = plt.colorbar(sc, fraction=0.055)
cb.set_label(label='user sampling rate', size=13)
cb.ax.tick_params(labelsize=11)
for ax in axes[:2]:
ax.set_xlim([-4, 104])
ax.set_ylim(bottom=-4)
ax.set_xticks([0, 50, 100])
ax.set_yticks([0, 50, 100])
ax.tick_params(axis='both', which='major', labelsize=11)
timer.stop()
plt.tight_layout()
plt.savefig('../images/top_entity_rank.pdf', bbox_inches='tight')
if not platform.system() == 'Linux':
plt.show()
if __name__ == '__main__':
main()