Skip to content

avinash-mishra/gan-style-transfer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GAN-coupon-art

Pytorch implementation of style transfer.

My Idea

Tabe of content

Stylize Images Using Pre-trained MSG-Net

  1. Download the pre-trained model

    git clone https://gitlab.catmktg.com/amishra/GAN-coupon-art.git
    cd GAN-coupon-art/experiments
    bash models/download_model.sh
    
  2. Camera Demo

    python camera_demo.py demo --model models/21styles.model
    

  3. Test the model

    python main.py eval --content-image images/content/venice-boat.jpg --style-image images/21styles/candy.jpg --model models/21styles.model --content-size 1024
    
  • If you don't have a GPU, simply set --cuda=0. For a different style, set --style-image path/to/style. If you would to stylize your own photo, change the --content-image path/to/your/photo. More options:

    • --content-image: path to content image you want to stylize.
    • --style-image: path to style image (typically covered during the training).
    • --model: path to the pre-trained model to be used for stylizing the image.
    • --output-image: path for saving the output image.
    • --content-size: the content image size to test on.
    • --cuda: set it to 1 for running on GPU, 0 for CPU.

Train Your Own MSG-Net Model

  1. Download the COCO dataset

    bash dataset/download_dataset.sh
    
  2. Train the model

    python main.py train --epochs 4
    
  • If you would like to customize styles, set --style-folder path/to/your/styles. More options:
    • --style-folder: path to the folder style images.
    • --vgg-model-dir: path to folder where the vgg model will be downloaded.
    • --save-model-dir: path to folder where trained model will be saved.
    • --cuda: set it to 1 for running on GPU, 0 for CPU.

Neural Style

Image Style Transfer Using Convolutional Neural Networks by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.

python main.py optim --content-image images/content/venice-boat.jpg --style-image images/21styles/candy.jpg
  • --content-image: path to content image.
  • --style-image: path to style image.
  • --output-image: path for saving the output image.
  • --content-size: the content image size to test on.
  • --style-size: the style image size to test on.
  • --cuda: set it to 1 for running on GPU, 0 for CPU.


About

Implementation of GANs for coupon style transfer.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published