Pytorch implementation of style transfer.
Tabe of content
-
Download the pre-trained model
git clone https://gitlab.catmktg.com/amishra/GAN-coupon-art.git cd GAN-coupon-art/experiments bash models/download_model.sh
-
Camera Demo
python camera_demo.py demo --model models/21styles.model
-
Test the model
python main.py eval --content-image images/content/venice-boat.jpg --style-image images/21styles/candy.jpg --model models/21styles.model --content-size 1024
-
If you don't have a GPU, simply set
--cuda=0
. For a different style, set--style-image path/to/style
. If you would to stylize your own photo, change the--content-image path/to/your/photo
. More options:--content-image
: path to content image you want to stylize.--style-image
: path to style image (typically covered during the training).--model
: path to the pre-trained model to be used for stylizing the image.--output-image
: path for saving the output image.--content-size
: the content image size to test on.--cuda
: set it to 1 for running on GPU, 0 for CPU.
-
Download the COCO dataset
bash dataset/download_dataset.sh
-
Train the model
python main.py train --epochs 4
- If you would like to customize styles, set
--style-folder path/to/your/styles
. More options:--style-folder
: path to the folder style images.--vgg-model-dir
: path to folder where the vgg model will be downloaded.--save-model-dir
: path to folder where trained model will be saved.--cuda
: set it to 1 for running on GPU, 0 for CPU.
Image Style Transfer Using Convolutional Neural Networks by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.
python main.py optim --content-image images/content/venice-boat.jpg --style-image images/21styles/candy.jpg
--content-image
: path to content image.--style-image
: path to style image.--output-image
: path for saving the output image.--content-size
: the content image size to test on.--style-size
: the style image size to test on.--cuda
: set it to 1 for running on GPU, 0 for CPU.