-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Fix: ModelBuilder deployment & optimization of JumpStart llama-3.1 mo…
…dels (#4937) * Emit warning when cpu cores are requested with sharded model deployment. * Reformat sharded model validations. * fix pop on none error in jumpstart draft model flow * set lmi config on js model optimize * re-format lmi config switch * add e2e UT for lmi + .optimize() * add e2e UT for lmi + .optimize() no override * add deep UTs to catch regressions and test E2E fully and more practically * work around flake8 bug * flake8 workaround * fix flake8 syntax error in py38 --------- Co-authored-by: Joseph Zhang <cjz@amazon.com> Co-authored-by: Gary Wang 😤 <garywan@amazon.com>
- Loading branch information
1 parent
7c14046
commit 801db44
Showing
8 changed files
with
503 additions
and
15 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
238 changes: 238 additions & 0 deletions
238
tests/integ/sagemaker/serve/test_serve_js_deep_unit_tests.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,238 @@ | ||
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"). You | ||
# may not use this file except in compliance with the License. A copy of | ||
# the License is located at | ||
# | ||
# http://aws.amazon.com/apache2.0/ | ||
# | ||
# or in the "license" file accompanying this file. This file is | ||
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF | ||
# ANY KIND, either express or implied. See the License for the specific | ||
# language governing permissions and limitations under the License. | ||
from __future__ import absolute_import | ||
from unittest.mock import MagicMock, patch, ANY | ||
|
||
from sagemaker.session import Session | ||
from sagemaker.serve.builder.model_builder import ModelBuilder | ||
from sagemaker.serve.builder.schema_builder import SchemaBuilder | ||
from sagemaker.resource_requirements import ResourceRequirements | ||
|
||
ROLE_NAME = "SageMakerRole" | ||
|
||
|
||
def test_js_model_with_optimize_speculative_decoding_config_gated_requests_are_expected( | ||
sagemaker_session, | ||
): | ||
with patch.object( | ||
Session, "create_model", return_value="mock_model" | ||
) as mock_create_model, patch.object( | ||
Session, "endpoint_from_production_variants" | ||
) as mock_endpoint_from_production_variants: | ||
iam_client = sagemaker_session.boto_session.client("iam") | ||
role_arn = iam_client.get_role(RoleName=ROLE_NAME)["Role"]["Arn"] | ||
|
||
schema_builder = SchemaBuilder("test", "test") | ||
model_builder = ModelBuilder( | ||
model="meta-textgeneration-llama-3-1-8b-instruct", | ||
schema_builder=schema_builder, | ||
sagemaker_session=sagemaker_session, | ||
role_arn=role_arn, | ||
) | ||
|
||
optimized_model = model_builder.optimize( | ||
instance_type="ml.g5.xlarge", # set to small instance in case a network call is made | ||
speculative_decoding_config={ | ||
"ModelProvider": "JumpStart", | ||
"ModelID": "meta-textgeneration-llama-3-2-1b", | ||
"AcceptEula": True, | ||
}, | ||
accept_eula=True, | ||
) | ||
|
||
optimized_model.deploy() | ||
|
||
mock_create_model.assert_called_once_with( | ||
name=ANY, | ||
role=ANY, | ||
container_defs={ | ||
"Image": ANY, | ||
"Environment": { | ||
"SAGEMAKER_PROGRAM": "inference.py", | ||
"ENDPOINT_SERVER_TIMEOUT": "3600", | ||
"MODEL_CACHE_ROOT": "/opt/ml/model", | ||
"SAGEMAKER_ENV": "1", | ||
"HF_MODEL_ID": "/opt/ml/model", | ||
"SAGEMAKER_MODEL_SERVER_WORKERS": "1", | ||
"OPTION_SPECULATIVE_DRAFT_MODEL": "/opt/ml/additional-model-data-sources/draft_model/", | ||
}, | ||
"AdditionalModelDataSources": [ | ||
{ | ||
"ChannelName": "draft_model", | ||
"S3DataSource": { | ||
"S3Uri": ANY, | ||
"S3DataType": "S3Prefix", | ||
"CompressionType": "None", | ||
"ModelAccessConfig": {"AcceptEula": True}, | ||
}, | ||
} | ||
], | ||
"ModelDataSource": { | ||
"S3DataSource": { | ||
"S3Uri": ANY, | ||
"S3DataType": "S3Prefix", | ||
"CompressionType": "None", | ||
"ModelAccessConfig": {"AcceptEula": True}, | ||
} | ||
}, | ||
}, | ||
vpc_config=None, | ||
enable_network_isolation=True, | ||
tags=ANY, | ||
) | ||
mock_endpoint_from_production_variants.assert_called_once() | ||
|
||
|
||
def test_js_model_with_optimize_sharding_and_resource_requirements_requests_are_expected( | ||
sagemaker_session, | ||
): | ||
with patch.object( | ||
Session, | ||
"wait_for_optimization_job", | ||
return_value={"OptimizationJobName": "mock_optimization_job"}, | ||
), patch.object( | ||
Session, "create_model", return_value="mock_model" | ||
) as mock_create_model, patch.object( | ||
Session, "endpoint_from_production_variants", return_value="mock_endpoint_name" | ||
) as mock_endpoint_from_production_variants, patch.object( | ||
Session, "create_inference_component" | ||
) as mock_create_inference_component: | ||
iam_client = sagemaker_session.boto_session.client("iam") | ||
role_arn = iam_client.get_role(RoleName=ROLE_NAME)["Role"]["Arn"] | ||
|
||
sagemaker_session.sagemaker_client.create_optimization_job = MagicMock() | ||
|
||
schema_builder = SchemaBuilder("test", "test") | ||
model_builder = ModelBuilder( | ||
model="meta-textgeneration-llama-3-1-8b-instruct", | ||
schema_builder=schema_builder, | ||
sagemaker_session=sagemaker_session, | ||
role_arn=role_arn, | ||
) | ||
|
||
optimized_model = model_builder.optimize( | ||
instance_type="ml.g5.xlarge", # set to small instance in case a network call is made | ||
sharding_config={"OverrideEnvironment": {"OPTION_TENSOR_PARALLEL_DEGREE": "8"}}, | ||
accept_eula=True, | ||
) | ||
|
||
optimized_model.deploy( | ||
resources=ResourceRequirements(requests={"memory": 196608, "num_accelerators": 8}) | ||
) | ||
|
||
mock_create_model.assert_called_once_with( | ||
name=ANY, | ||
role=ANY, | ||
container_defs={ | ||
"Image": ANY, | ||
"Environment": { | ||
"SAGEMAKER_PROGRAM": "inference.py", | ||
"ENDPOINT_SERVER_TIMEOUT": "3600", | ||
"MODEL_CACHE_ROOT": "/opt/ml/model", | ||
"SAGEMAKER_ENV": "1", | ||
"HF_MODEL_ID": "/opt/ml/model", | ||
"SAGEMAKER_MODEL_SERVER_WORKERS": "1", | ||
"OPTION_TENSOR_PARALLEL_DEGREE": "8", | ||
}, | ||
"ModelDataSource": { | ||
"S3DataSource": { | ||
"S3Uri": ANY, | ||
"S3DataType": "S3Prefix", | ||
"CompressionType": "None", | ||
"ModelAccessConfig": {"AcceptEula": True}, | ||
} | ||
}, | ||
}, | ||
vpc_config=None, | ||
enable_network_isolation=False, # should be set to false | ||
tags=ANY, | ||
) | ||
mock_endpoint_from_production_variants.assert_called_once_with( | ||
name=ANY, | ||
production_variants=ANY, | ||
tags=ANY, | ||
kms_key=ANY, | ||
vpc_config=ANY, | ||
enable_network_isolation=False, | ||
role=ANY, | ||
live_logging=False, # this should be set to false for IC | ||
wait=True, | ||
) | ||
mock_create_inference_component.assert_called_once() | ||
|
||
|
||
def test_js_model_with_optimize_quantization_on_pre_optimized_model_requests_are_expected( | ||
sagemaker_session, | ||
): | ||
with patch.object( | ||
Session, | ||
"wait_for_optimization_job", | ||
return_value={"OptimizationJobName": "mock_optimization_job"}, | ||
), patch.object( | ||
Session, "create_model", return_value="mock_model" | ||
) as mock_create_model, patch.object( | ||
Session, "endpoint_from_production_variants", return_value="mock_endpoint_name" | ||
) as mock_endpoint_from_production_variants: | ||
iam_client = sagemaker_session.boto_session.client("iam") | ||
role_arn = iam_client.get_role(RoleName=ROLE_NAME)["Role"]["Arn"] | ||
|
||
sagemaker_session.sagemaker_client.create_optimization_job = MagicMock() | ||
|
||
schema_builder = SchemaBuilder("test", "test") | ||
model_builder = ModelBuilder( | ||
model="meta-textgeneration-llama-3-1-8b-instruct", | ||
schema_builder=schema_builder, | ||
sagemaker_session=sagemaker_session, | ||
role_arn=role_arn, | ||
) | ||
|
||
optimized_model = model_builder.optimize( | ||
instance_type="ml.g5.xlarge", # set to small instance in case a network call is made | ||
quantization_config={ | ||
"OverrideEnvironment": { | ||
"OPTION_QUANTIZE": "fp8", | ||
}, | ||
}, | ||
accept_eula=True, | ||
) | ||
|
||
optimized_model.deploy() | ||
|
||
mock_create_model.assert_called_once_with( | ||
name=ANY, | ||
role=ANY, | ||
container_defs={ | ||
"Image": ANY, | ||
"Environment": { | ||
"SAGEMAKER_PROGRAM": "inference.py", | ||
"ENDPOINT_SERVER_TIMEOUT": "3600", | ||
"MODEL_CACHE_ROOT": "/opt/ml/model", | ||
"SAGEMAKER_ENV": "1", | ||
"HF_MODEL_ID": "/opt/ml/model", | ||
"SAGEMAKER_MODEL_SERVER_WORKERS": "1", | ||
"OPTION_QUANTIZE": "fp8", | ||
}, | ||
"ModelDataSource": { | ||
"S3DataSource": { | ||
"S3Uri": ANY, | ||
"S3DataType": "S3Prefix", | ||
"CompressionType": "None", | ||
"ModelAccessConfig": {"AcceptEula": True}, | ||
} | ||
}, | ||
}, | ||
vpc_config=None, | ||
enable_network_isolation=True, # should be set to false | ||
tags=ANY, | ||
) | ||
mock_endpoint_from_production_variants.assert_called_once() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.