-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Description
Describe the bug
I'm getting KeyError : 'callable_inputs' when trying to save a Tensorflow model in S3 bucket. What's weird is that the exact same code used to work, even rolling back to previous versions doesn't solve the problem
To reproduce
parser.add_argument("--model_dir", type=str, default=os.environ.get("SM_MODEL_DIR"))
model.save(args.model_dir)
Expected behavior
The model is saved in S3 bucket
Screenshots or logs
Traceback (most recent call last): File "entrypoint_train.py", line 40, in <module> train_model(parse_args(cmd_args)[0]) File "/opt/ml/code/ciacoml/change_detector/training/train_tf_model.py", line 88, in train_model model.save(args.model_dir) File "/opt/ml/code/ciacoml/change_detector/domain/tf_model_wrapper.py", line 106, in save tf.keras.models.save_model(self.model, save_path) File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/saving/save.py", line 138, in save_model signatures, options) File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/saving/saved_model/save.py", line 78, in save save_lib.save(model, filepath, signatures, options
...
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/saving/saved_model/save_impl.py", line 453, in get_input_arg_value self._input_arg_name, args, kwargs, inputs_in_args=True) File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/base_layer.py", line 2291, in _get_call_arg_value return args_dict[arg_name] KeyError: 'callable_inputs'
System information
A description of your system. Please provide:
- SageMaker Python SDK version: 2.5.1
- Framework name (eg. PyTorch) or algorithm (eg. KMeans): Tensorflow
- Framework version: 2.3.0
- Python version: 3.7
- CPU or GPU: GPU
- Custom Docker image (Y/N): Y