-
Notifications
You must be signed in to change notification settings - Fork 765
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Loading status checks…
add iTransformer multivariate forecaster (#3017)
* add iTransformer * add docstring * add parameters * comments * fix comment * fix types * remove unused input_size * remove input_size * add nonnegative_pred_samples * clear cell * more clear * add tests * move multivariate estimator tests to its own file --------- Co-authored-by: Lorenzo Stella <stellalo@amazon.com>
- Loading branch information
Showing
6 changed files
with
1,061 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"). | ||
# You may not use this file except in compliance with the License. | ||
# A copy of the License is located at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# or in the "license" file accompanying this file. This file is distributed | ||
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either | ||
# express or implied. See the License for the specific language governing | ||
# permissions and limitations under the License. | ||
|
||
from .module import ITransformerModel | ||
from .lightning_module import ITransformerLightningModule | ||
from .estimator import ITransformerEstimator | ||
|
||
__all__ = [ | ||
"ITransformerModel", | ||
"ITransformerLightningModule", | ||
"ITransformerEstimator", | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,282 @@ | ||
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"). | ||
# You may not use this file except in compliance with the License. | ||
# A copy of the License is located at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# or in the "license" file accompanying this file. This file is distributed | ||
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either | ||
# express or implied. See the License for the specific language governing | ||
# permissions and limitations under the License. | ||
|
||
from typing import Optional, Iterable, Dict, Any | ||
|
||
import torch | ||
import lightning.pytorch as pl | ||
|
||
from gluonts.core.component import validated | ||
from gluonts.dataset.common import Dataset | ||
from gluonts.dataset.field_names import FieldName | ||
from gluonts.dataset.loader import as_stacked_batches | ||
from gluonts.itertools import Cyclic | ||
from gluonts.torch.modules.loss import DistributionLoss, NegativeLogLikelihood | ||
from gluonts.transform import ( | ||
AsNumpyArray, | ||
Transformation, | ||
AddObservedValuesIndicator, | ||
InstanceSampler, | ||
InstanceSplitter, | ||
ValidationSplitSampler, | ||
TestSplitSampler, | ||
ExpectedNumInstanceSampler, | ||
SelectFields, | ||
) | ||
from gluonts.torch.model.estimator import PyTorchLightningEstimator | ||
from gluonts.torch.model.predictor import PyTorchPredictor | ||
from gluonts.torch.distributions import DistributionOutput, StudentTOutput | ||
|
||
from .lightning_module import ITransformerLightningModule | ||
|
||
PREDICTION_INPUT_NAMES = ["past_target", "past_observed_values"] | ||
|
||
TRAINING_INPUT_NAMES = PREDICTION_INPUT_NAMES + [ | ||
"future_target", | ||
"future_observed_values", | ||
] | ||
|
||
|
||
class ITransformerEstimator(PyTorchLightningEstimator): | ||
""" | ||
An estimator training the iTransformer model for multivariate forecasting as described in | ||
https://arxiv.org/abs/2310.06625 extended to be probabilistic. | ||
This class uses the model defined in ``ITransformerModel``, | ||
and wraps it into a ``ITransformerLightningModule`` for training | ||
purposes: training is performed using PyTorch Lightning's ``pl.Trainer`` | ||
class. | ||
Parameters | ||
---------- | ||
prediction_length | ||
Length of the prediction horizon. | ||
context_length | ||
Number of time steps prior to prediction time that the model | ||
takes as inputs (default: ``10 * prediction_length``). | ||
d_model | ||
Size of latent in the Transformer encoder. | ||
nhead | ||
Number of attention heads in the Transformer encoder which must divide d_model. | ||
dim_feedforward | ||
Size of hidden layers in the Transformer encoder. | ||
dropout | ||
Dropout probability in the Transformer encoder. | ||
activation | ||
Activation function in the Transformer encoder. | ||
norm_first | ||
Whether to apply normalization before or after the attention. | ||
num_encoder_layers | ||
Number of layers in the Transformer encoder. | ||
lr | ||
Learning rate (default: ``1e-3``). | ||
weight_decay | ||
Weight decay regularization parameter (default: ``1e-8``). | ||
scaling | ||
Scaling parameter can be "mean", "std" or None. | ||
distr_output | ||
Distribution to use to evaluate observations and sample predictions | ||
(default: StudentTOutput()). | ||
num_parallel_samples | ||
Number of samples per time series to that the resulting predictor | ||
should produce (default: 100). | ||
loss | ||
Loss to be optimized during training | ||
(default: ``NegativeLogLikelihood()``). | ||
batch_size | ||
The size of the batches to be used for training (default: 32). | ||
num_batches_per_epoch | ||
Number of batches to be processed in each training epoch | ||
(default: 50). | ||
trainer_kwargs | ||
Additional arguments to provide to ``pl.Trainer`` for construction. | ||
train_sampler | ||
Controls the sampling of windows during training. | ||
validation_sampler | ||
Controls the sampling of windows during validation. | ||
nonnegative_pred_samples | ||
Should final prediction samples be non-negative? If yes, an activation | ||
function is applied to ensure non-negative. Observe that this is applied | ||
only to the final samples and this is not applied during training. | ||
""" | ||
|
||
@validated() | ||
def __init__( | ||
self, | ||
prediction_length: int, | ||
context_length: Optional[int] = None, | ||
d_model: int = 32, | ||
nhead: int = 4, | ||
dim_feedforward: int = 128, | ||
dropout: float = 0.1, | ||
activation: str = "relu", | ||
norm_first: bool = False, | ||
num_encoder_layers: int = 2, | ||
lr: float = 1e-3, | ||
weight_decay: float = 1e-8, | ||
scaling: Optional[str] = "mean", | ||
distr_output: DistributionOutput = StudentTOutput(), | ||
loss: DistributionLoss = NegativeLogLikelihood(), | ||
num_parallel_samples: int = 100, | ||
batch_size: int = 32, | ||
num_batches_per_epoch: int = 50, | ||
trainer_kwargs: Optional[Dict[str, Any]] = None, | ||
train_sampler: Optional[InstanceSampler] = None, | ||
validation_sampler: Optional[InstanceSampler] = None, | ||
nonnegative_pred_samples: bool = False, | ||
) -> None: | ||
default_trainer_kwargs = { | ||
"max_epochs": 100, | ||
"gradient_clip_val": 10.0, | ||
} | ||
if trainer_kwargs is not None: | ||
default_trainer_kwargs.update(trainer_kwargs) | ||
super().__init__(trainer_kwargs=default_trainer_kwargs) | ||
|
||
self.prediction_length = prediction_length | ||
self.context_length = context_length or 10 * prediction_length | ||
# TODO find way to enforce same defaults to network and estimator | ||
# somehow | ||
self.lr = lr | ||
self.weight_decay = weight_decay | ||
self.distr_output = distr_output | ||
self.num_parallel_samples = num_parallel_samples | ||
self.loss = loss | ||
self.scaling = scaling | ||
self.d_model = d_model | ||
self.nhead = nhead | ||
self.dim_feedforward = dim_feedforward | ||
self.dropout = dropout | ||
self.activation = activation | ||
self.norm_first = norm_first | ||
self.num_encoder_layers = num_encoder_layers | ||
self.batch_size = batch_size | ||
self.num_batches_per_epoch = num_batches_per_epoch | ||
self.nonnegative_pred_samples = nonnegative_pred_samples | ||
|
||
self.train_sampler = train_sampler or ExpectedNumInstanceSampler( | ||
num_instances=1.0, min_future=prediction_length | ||
) | ||
self.validation_sampler = validation_sampler or ValidationSplitSampler( | ||
min_future=prediction_length | ||
) | ||
|
||
def create_transformation(self) -> Transformation: | ||
return ( | ||
SelectFields( | ||
[ | ||
FieldName.ITEM_ID, | ||
FieldName.INFO, | ||
FieldName.START, | ||
FieldName.TARGET, | ||
], | ||
allow_missing=True, | ||
) | ||
+ AsNumpyArray(field=FieldName.TARGET, expected_ndim=2) | ||
+ AddObservedValuesIndicator( | ||
target_field=FieldName.TARGET, | ||
output_field=FieldName.OBSERVED_VALUES, | ||
) | ||
) | ||
|
||
def create_lightning_module(self) -> pl.LightningModule: | ||
return ITransformerLightningModule( | ||
loss=self.loss, | ||
lr=self.lr, | ||
weight_decay=self.weight_decay, | ||
num_parallel_samples=self.num_parallel_samples, | ||
model_kwargs={ | ||
"prediction_length": self.prediction_length, | ||
"context_length": self.context_length, | ||
"d_model": self.d_model, | ||
"nhead": self.nhead, | ||
"dim_feedforward": self.dim_feedforward, | ||
"dropout": self.dropout, | ||
"activation": self.activation, | ||
"norm_first": self.norm_first, | ||
"num_encoder_layers": self.num_encoder_layers, | ||
"distr_output": self.distr_output, | ||
"scaling": self.scaling, | ||
"nonnegative_pred_samples": self.nonnegative_pred_samples, | ||
}, | ||
) | ||
|
||
def _create_instance_splitter( | ||
self, module: ITransformerLightningModule, mode: str | ||
): | ||
assert mode in ["training", "validation", "test"] | ||
|
||
instance_sampler = { | ||
"training": self.train_sampler, | ||
"validation": self.validation_sampler, | ||
"test": TestSplitSampler(), | ||
}[mode] | ||
|
||
return InstanceSplitter( | ||
target_field=FieldName.TARGET, | ||
is_pad_field=FieldName.IS_PAD, | ||
start_field=FieldName.START, | ||
forecast_start_field=FieldName.FORECAST_START, | ||
instance_sampler=instance_sampler, | ||
past_length=self.context_length, | ||
future_length=self.prediction_length, | ||
time_series_fields=[FieldName.OBSERVED_VALUES], | ||
dummy_value=self.distr_output.value_in_support, | ||
) | ||
|
||
def create_training_data_loader( | ||
self, | ||
data: Dataset, | ||
module: ITransformerLightningModule, | ||
shuffle_buffer_length: Optional[int] = None, | ||
**kwargs | ||
) -> Iterable: | ||
data = Cyclic(data).stream() | ||
instances = self._create_instance_splitter(module, "training").apply( | ||
data, is_train=True | ||
) | ||
return as_stacked_batches( | ||
instances, | ||
batch_size=self.batch_size, | ||
shuffle_buffer_length=shuffle_buffer_length, | ||
field_names=TRAINING_INPUT_NAMES, | ||
output_type=torch.tensor, | ||
num_batches_per_epoch=self.num_batches_per_epoch, | ||
) | ||
|
||
def create_validation_data_loader( | ||
self, data: Dataset, module: ITransformerLightningModule, **kwargs | ||
) -> Iterable: | ||
instances = self._create_instance_splitter(module, "validation").apply( | ||
data, is_train=True | ||
) | ||
return as_stacked_batches( | ||
instances, | ||
batch_size=self.batch_size, | ||
field_names=TRAINING_INPUT_NAMES, | ||
output_type=torch.tensor, | ||
) | ||
|
||
def create_predictor( | ||
self, transformation: Transformation, module | ||
) -> PyTorchPredictor: | ||
prediction_splitter = self._create_instance_splitter(module, "test") | ||
|
||
return PyTorchPredictor( | ||
input_transform=transformation + prediction_splitter, | ||
input_names=PREDICTION_INPUT_NAMES, | ||
prediction_net=module, | ||
batch_size=self.batch_size, | ||
prediction_length=self.prediction_length, | ||
device="auto", | ||
) |
Oops, something went wrong.