Skip to content

PG Counter Metrics ( PGCM ) is a tool for publishing PostgreSQL performance data to CloudWatch. By publishing to CloudWatch, dashboards and alarming can be used on the collected data.

License

Notifications You must be signed in to change notification settings

awslabs/pg-counter-metrics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PG Counter Metrics (PGCM)

What is PG Counter Metrics (PGCM) ?

PG Counter Metrics ( PGCM ) is a tool for publishing PostgreSQL performance data to CloudWatch. By publishing to CloudWatch, dashboards and alarming can be used on the collected data.

Pg Counter Metrics ( PGCM ) components :

- Lambda
- CloudWatch dashboard
- CloudWatch metrics
- CloudWatch alarms
- RDS IAM database authentication
- AWS Secrets Manager
- python

Note: PG Counter Metrics support only one database in the PostgreSQL instance , in the future release it will suppport more than one Database and it will provide database performance metrics per database .

Why do we need PG Counter Metrics (PGCM) ?

  • PostgreSQL has no any historical performance data
  • PG Counter Metrics’s CloudWatch metrics will be used with CloudWatch alarms to be the advanced alarm system
  • PGCM provide comprehensive dashbaord and metrics

Supported authentication types :

PGCM support three authentication types

1- IAM Database Authentication
2- AWS Secrets Manager
3- clear password ( it should be used for TEST ENV and debuing mode only )

PG Counter Metrics Types :

There are three type of metrics

1- Database performance metrics
2- Table metrics (per table)
3- pg_stat_statements (only for the top 20 query that consume the DB time / per query id)

1- Database performance metrics :

# Counter Metric Name Description
1 Xid_Percent_Towards_Wraparound Percent Towards Wraparound
2 percent_towards_emergency_autovacuum Percent towards emergency autovacuum, when XID reach autovacuum_freeze_max_age parameter value
3 queries_canceled_due_to_lock_timeouts number of queries canceled due to lock timeouts
4 queries_canceled_due_to_lock_deadlocks number of queries canceled due to dead locks
5 idle_in_transaction_sessions number of idle in transaction sessions
6 idle_sessions number of idle sessions
7 idle_in_transaction_aborted_sessions number of idle in transaction aborted sessions
8 active_sessions number of active sessions
9 Inactive_replication_slots number of Inactive replication slots
10 Active_replication_slots number of Active replication slots
11 invalid_indexes number of invalid indexes
12 deadlocks number of deadlocks
13 total_connections total number of connection
14 max_connections max_connections parameter value
15 autovacuum_freeze_max_age autovacuum_freeze_max_age parameter value
16 oldest_xid oldest Transaction ID
17 autovacuum_count_per_min how many autovacuum excuted per min
18 autovacuum_count_per_hour how many autovacuum excuted per hour
19 autovacuum_count_per_day how many autovacuum excuted per day
20 autoanalyze_count_per_min how many autoanalyze excuted per min
21 autoanalyze_count_per_hour how many autoanalyze excuted per hour
22 autoanalyze_count_per_day how many autoanalyze excuted per day
23 total_DB_size_in_GB total databases size in the Postgresql instance
24 blocked_sessions number of blocked sessions
25 wait_event wait_event / session count, how many sessions waiting on each wait event ,this metric is dynamic and it will create new cloud watch metric every time there is new wait event appear in the DB
26 oldest_open_transaction this metic will show the longest running transaction for the active sessions only
27 oldest_open_idl_in_transaction this metic will show the longest running idl in transaction for the sessions with idl in transaction status
28 n_tables_eligible_for_autovacuum number of tables eligible for autovacuum
29 not_granted_lock number of not granted lock
30 lock_mode lock_mode column in pg_locks / session count,how many sessions waiting on each lock mode
31 lock_type lock_type column in pg_locks / session count,how many sessions waiting on each lock_type
32 xact_commit number of commits
33 xact_rollback number of rollback
34 xact_commit_ratio commit ratio
35 tup_returned Number of rows returned by all queries
36 tup_fetched Number of rows fetched by all queries
37 tup_updated Number of rows updated by all queries
38 tup_deleted Number of rows deleted by all queries
39 tup_inserted Number of rows inserted by all queries
40 checkpoints_requested Number of requested checkpoints that have been performed
41 checkpoints_timed Number of scheduled checkpoints that have been performed
42 connections_utilization 100*( total_connections / max_connections)
43 Oldest_Replication_Slot_Lag The lagging size in bytes of the Oldest Replication Slot
44 Replication_Slot_Lag_per_slot_(slot_name) The lagging size in bytes for each Replication Slot
45 DBLoadCPU total number of active sessions waiting on CPU
46 DBLoadNoneCPU total number of active sessions waiting on None CPU wait event
47 bgwriter_buffers_backend Number of buffers written directly by a backend
48 bgwriter_maxwritten_clean Number of times the background writer stopped a cleaning scan because it had written too many buffers
49 bgwriter_buffers_clean Number of buffers written by the background writer
50 oldest_mxid the oldest Multixact IDs (MXID)
51 autovacuum_multixact_freeze_max_age autovacuum_multixact_freeze_max_age parameter value

2- Table metrics (per Table):

Table Metric Name= < metric_name > _ < Table_Name >

# Counter Metric Name Description
1 table_stat_n_tup_upd_ < Table_Name > number of rows (tuples) updated
2 table_stat_n_tup_del_ < Table_Name > number of rows (tuples) deleted
3 table_stat_n_tup_ins_ < Table_Name > number of rows (tuples) inserted
4 table_stat_n_mod_since_analyze_ < Table_Name > Estimated number of rows modified since this table was last analyzed
5 table_stat_n_tup_hot_upd_ < Table_Name > number of hot update
6 table_stat_tup_ins_precent_ < Table_Name > percent of rows (tuples) inserted
7 table_stat_tup_upd_precent_ < Table_Name > percent of rows (tuples) updated
8 table_stat_tup_del_precent_ < Table_Name > percent of rows (tuples) deleted
9 table_stat_total_idx_scan_ < Table_Name > total number of index scan
10 table_stat_total_fts_scan_ < Table_Name > total number of full table scan (seq scan )
11 table_stat_n_live_tup_ < Table_Name > number of the live rows (tuples)
12 table_stat_n_dead_tup_ < Table_Name > number of the dead rows (tuples)
13 table_stat_dead_tup_percent_ < Table_Name > percent of dead rows (tuples)
14 table_stat_autovacuum_count_ < Table_Name > autovacuum count
15 table_stat_autoanalyze_count_ < Table_Name > autoanalyze count

3- pg_stat_statements (only the top 20 query that consume the DB time / per query id):

Note: pg_stat_statements extension need to be enabled

the below query to list the top 20 query that consume the DB time

select  queryid,substring(query,1,60) as query , calls, 
round(total_time::numeric, 2) as total_time_Msec, 
round((total_time::numeric/1000), 2) as total_time_sec,
round(mean_time::numeric,2) as avg_time_Msec,
round((mean_time::numeric/1000),2) as avg_time_sec,
round(stddev_time::numeric, 2) as standard_deviation_time_Msec, 
round((stddev_time::numeric/1000), 2) as standard_deviation_time_sec, 
round(rows::numeric/calls,2) rows_per_exec,
round((100 * total_time / sum(total_time) over ())::numeric, 4) as percent
from pg_stat_statements 
order by percent desc limit 20;

# Counter Metric Name Description
1 pg_stat_statements_calls_queryid_< queryid > Number of times executed
2 pg_stat_statements_total_time_msec_queryid_< queryid > Total time spent in the statement, in milliseconds
3 pg_stat_statements_min_time_msec_queryid_< queryid > Minimum time spent in the statement, in milliseconds
4 pg_stat_statements_max_time_msec_queryid_< queryid > Maximum time spent in the statement, in milliseconds
5 pg_stat_statements_avg_time_msec_queryid_< queryid > Mean time spent in the statement, in milliseconds
6 pg_stat_statements_stddev_time_msec_queryid_< queryid > Population standard deviation of time spent in the statement, in milliseconds
7 pg_stat_statements_rows_per_exec_queryid_< queryid > number of rows retrieved or affected per execution
8 pg_stat_statements_rows_queryid_< queryid > Total number of rows retrieved or affected by the statement
9 pg_stat_statements_db_time_percent_queryid_< queryid > DB time percent consumed by this query
10 pg_stat_statements_shared_blks_hit_queryid_< queryid > Total number of shared block cache hits by the statement
11 pg_stat_statements_shared_blks_read_queryid_< queryid > Total number of shared blocks read by the statement
12 pg_stat_statements_shared_blks_dirtied_queryid_< queryid > Total number of shared blocks dirtied by the statement
13 pg_stat_statements_shared_blks_written_queryid_< queryid > Total number of shared blocks written by the statement
14 pg_stat_statements_local_blks_hit_queryid_< queryid > Total number of local block cache hits by the statement
15 pg_stat_statements_local_blks_read_queryid_< queryid > Total number of local blocks read by the statement
16 pg_stat_statements_local_blks_dirtied_queryid_< queryid > Total number of local blocks dirtied by the statement
17 pg_stat_statements_local_blks_written_queryid_< queryid > Total number of local blocks written by the statement
18 pg_stat_statements_temp_blks_read_queryid_< queryid > Total number of temp blocks read by the statement
19 pg_stat_statements_temp_blks_written_queryid_< queryid > Total number of temp blocks written by the statement
20 pg_stat_statements_blk_read_time_msec_queryid_< queryid > Total time the statement spent reading blocks, in milliseconds (if track_io_timing is enabled, otherwise zero)
21 pg_stat_statements_blk_write_time_msec_queryid_< queryid > Total time the statement spent writing blocks, in milliseconds (if track_io_timing is enabled, otherwise zero)

PG Counter Metrics Dashboards :

There are three type of Dashboard same like the metrics

    1- Dashboard for Database performance 
    2- Dashboard for Table metrics Dashboard (per table)
    3- Dashboard for pg_stat_statements (per query id)

the deafult option is to create the dashboard by using the could formation that already provided in the below steps but you still have the option to create custom dashboard please refer to AWS cloud watch documentation

Note: Some metrics use CloudWatch’s Rate Metric Math

CloudWatch’s Rate Metric Math : Returns the rate of change of the metric per second. This is calculated as the difference between the latest data point value and the previous data point value, divided by the time difference in seconds between the two values.

PG Counter Metrics Alarms :

PGCM provide cloud formation template that will provide basics alarms , you can edit the template to add more alarms, customize alarm Threshold and Period, add Notification etc. please refer to AWS cloudwatch Alarms documentation and AWS cloudFormation documentation

# Alarm Name Description
1 PGCM_Status_Alarm PGCM is not working for 3 Min
2 invalid_indexes_PGCM_Alarm invalid indexes count Equal or over 1 for 5 Min
3 nactive_Replication_Slot_PGCM_Alarm Inactive Replication Slot count Equal or over 1 for 15 Min
4 Xid_Wraparound_PGCM_Alarm Xid Percent Towards Wraparound is 50 % for 15 Min

Deploying PG Counter Metrics :

1- The below steps need to done only one time for each region

1.1- use the build script to create PGCM’s lambda ZIP file

cd pgcm
sh pgcm_build.sh

Example of the output

[Mohamed@dev-dsk pgcm]$ sh build.sh

Removeing existing pgcm_1.8.zip file

zip -r pgcm_1.8.zip pgcm.py rds_config.py tables_config.py scramp/ pg8000/ certs/ asn1crypto/

  adding: pgcm.py (deflated 91%)
  adding: rds_config.py (deflated 52%)
  adding: tables_config.py (deflated 53%)
  adding: scramp/ (stored 0%)
  adding: scramp/__init__.py (deflated 40%)
  adding: scramp/core.py (deflated 76%)
  adding: scramp/_version.py (deflated 71%)
  adding: scramp/utils.py (deflated 56%)
  adding: pg8000/ (stored 0%)
  adding: pg8000/native.py (deflated 68%)
  adding: pg8000/legacy.py (deflated 75%)
  adding: pg8000/exceptions.py (deflated 65%)
  adding: pg8000/converters.py (deflated 74%)
  adding: pg8000/__init__.py (deflated 57%)
  adding: pg8000/core.py (deflated 74%)
  adding: pg8000/_version.py (deflated 72%)
  adding: pg8000/dbapi.py (deflated 76%)
  adding: certs/ (stored 0%)
  adding: certs/commercial/ (stored 0%)
  adding: certs/commercial/rds-ca-2019-root.pem (deflated 29%)
  adding: asn1crypto/ (stored 0%)
  adding: asn1crypto/algos.py (deflated 82%)
  adding: asn1crypto/version.py (deflated 21%)
  adding: asn1crypto/pem.py (deflated 71%)
  adding: asn1crypto/cms.py (deflated 81%)
  adding: asn1crypto/_errors.py (deflated 50%)
  adding: asn1crypto/crl.py (deflated 79%)
  adding: asn1crypto/__init__.py (deflated 65%)
  adding: asn1crypto/core.py (deflated 83%)
  adding: asn1crypto/pkcs12.py (deflated 67%)
  adding: asn1crypto/_types.py (deflated 55%)
  adding: asn1crypto/_ordereddict.py (deflated 64%)
  adding: asn1crypto/_inet.py (deflated 74%)
  adding: asn1crypto/csr.py (deflated 63%)
  adding: asn1crypto/_int.py (deflated 47%)
  adding: asn1crypto/util.py (deflated 79%)
  adding: asn1crypto/x509.py (deflated 80%)
  adding: asn1crypto/parser.py (deflated 74%)
  adding: asn1crypto/_iri.py (deflated 70%)
  adding: asn1crypto/_teletex_codec.py (deflated 77%)
  adding: asn1crypto/tsp.py (deflated 76%)
  adding: asn1crypto/pdf.py (deflated 66%)
  adding: asn1crypto/keys.py (deflated 81%)
  adding: asn1crypto/ocsp.py (deflated 83%)

Generated new Lambda file pgcm_1.8.zip

Archive:  pgcm_1.8.zip
  Length      Date    Time    Name
---------  ---------- -----   ----
   123698  03-26-2021 18:25   pgcm.py
      935  03-26-2021 18:25   rds_config.py
      343  03-26-2021 18:25   tables_config.py
        0  03-26-2021 18:25   scramp/
      176  03-26-2021 18:25   scramp/__init__.py
    18205  03-26-2021 18:25   scramp/core.py
    18516  03-26-2021 18:25   scramp/_version.py
      655  03-26-2021 18:25   scramp/utils.py
        0  03-26-2021 18:25   pg8000/
     7569  03-26-2021 18:25   pg8000/native.py
    24407  03-26-2021 18:25   pg8000/legacy.py
      940  03-26-2021 18:25   pg8000/exceptions.py
    17071  03-26-2021 18:25   pg8000/converters.py
     4118  03-26-2021 18:25   pg8000/__init__.py
    33529  03-26-2021 18:25   pg8000/core.py
    15795  03-26-2021 18:25   pg8000/_version.py
    27190  03-26-2021 18:25   pg8000/dbapi.py
        0  03-26-2021 18:25   certs/
        0  03-26-2021 18:25   certs/commercial/
     1456  03-26-2021 18:25   certs/commercial/rds-ca-2019-root.pem
        0  03-26-2021 18:25   asn1crypto/
    35611  03-26-2021 18:25   asn1crypto/algos.py
      152  03-26-2021 18:25   asn1crypto/version.py
     6145  03-26-2021 18:25   asn1crypto/pem.py
    27294  03-26-2021 18:25   asn1crypto/cms.py
     1070  03-26-2021 18:25   asn1crypto/_errors.py
    16104  03-26-2021 18:25   asn1crypto/crl.py
     1219  03-26-2021 18:25   asn1crypto/__init__.py
   170559  03-26-2021 18:25   asn1crypto/core.py
     4566  03-26-2021 18:25   asn1crypto/pkcs12.py
      939  03-26-2021 18:25   asn1crypto/_types.py
     4533  03-26-2021 18:25   asn1crypto/_ordereddict.py
     4661  03-26-2021 18:25   asn1crypto/_inet.py
     2142  03-26-2021 18:25   asn1crypto/csr.py
      494  03-26-2021 18:25   asn1crypto/_int.py
    21873  03-26-2021 18:25   asn1crypto/util.py
    93421  03-26-2021 18:25   asn1crypto/x509.py
     8853  03-26-2021 18:25   asn1crypto/parser.py
     8733  03-26-2021 18:25   asn1crypto/_iri.py
     5053  03-26-2021 18:25   asn1crypto/_teletex_codec.py
     7827  03-26-2021 18:25   asn1crypto/tsp.py
     2250  03-26-2021 18:25   asn1crypto/pdf.py
    36788  03-26-2021 18:25   asn1crypto/keys.py
    19024  03-26-2021 18:25   asn1crypto/ocsp.py
---------                     -------
   773914                     44 files
   
[Mohamed@dev-dsk  pgcm]$

1.2- Create a S3 bucket (or reuse one you already have) for hosting the ZIP files

-> Set AWS_PROFILE as environment variable

export AWS_PROFILE= < >

-> Create S3 bucket called pgcm

aws s3 mb s3://pgcm --profile ${AWS_PROFILE} --output table

-> upload pgcm_< version >.zip to the S3 bucket

aws s3 cp <>.zip s3://pgcm/ --profile ${AWS_PROFILE} --output table

EX:
aws s3 cp pgcm_1.8.zip s3://pgcm/ --profile ${AWS_PROFILE} --output table

-> check the uploaded zip file

aws s3 ls s3://pgcm/  --human-readable --profile ${AWS_PROFILE} --output table

Note:

  • To be able to finish the next steps you need to get some information about the database like VPC , Security Group , Port and DB Resource Id.
  • you will need the DB Resource Id if you will use the IAM DB Auth

set environment variables:

-> Set AWS_PROFILE as environment variable

export AWS_PROFILE= < >

-> set the RDS PostgreSQL DB INSTANCE IDENTIFIER as environment variable

export DB_INSTANCE_IDENTIFIER=

-> set AWS Region as environment variable

export REGION=

-> run below AWS cli to get the infomation

aws rds describe-db-instances --db-instance-identifier ${DB_INSTANCE_IDENTIFIER} --profile ${AWS_PROFILE}  | grep VpcId
aws rds describe-db-instances --profile ${AWS_PROFILE} | grep VpcSecurityGroupId
aws rds describe-db-instances --db-instance-identifier ${DB_INSTANCE_IDENTIFIER} --profile ${AWS_PROFILE}  | grep SubnetIdentifier
aws rds describe-db-instances --db-instance-identifier ${DB_INSTANCE_IDENTIFIER} --profile ${AWS_PROFILE} | grep -w "Port"
aws rds describe-db-instances --db-instance-identifier ${DB_INSTANCE_IDENTIFIER} --profile ${AWS_PROFILE} | grep DbiResourceId

-> use the above information to set below environment variables

export VPC_ID= < >
export DB_PORT= < >
export SUBNET_ID_1= < >
export SUBNET_ID_2= < >
export SUBNET_ID_3= < > 
export SUBNET_ID_4= < >
export SECURITYGROUPID= < >

1.3- Create VPC Endpoint for cloud watch so Lambda can connect over private link

aws ec2 create-vpc-endpoint  \
--vpc-endpoint-type  Interface \
--vpc-id ${VPC_ID} \
--subnet-ids ${SUBNET_ID_1} ${SUBNET_ID_2} ${SUBNET_ID_3} \
--security-group-id  ${SECURITYGROUPID} \
--service-name com.amazonaws.${REGION}.monitoring \
--private-dns-enabled \
--profile ${AWS_PROFILE} --output table 
aws ec2 describe-vpc-endpoint-services \
--service-names com.amazonaws.${REGION}.monitoring \
--profile ${AWS_PROFILE} --output table

1.4- Create VPC Endpoint for AWS Secrets Manager if you will use Secrets Manager as authentication type

aws ec2 create-vpc-endpoint  \
--vpc-endpoint-type  Interface \
--vpc-id ${VPC_ID} \
--subnet-ids ${SUBNET_ID_1} ${SUBNET_ID_2} ${SUBNET_ID_3} \
--security-group-id  ${SECURITYGROUPID} \
--service-name com.amazonaws.${REGION}.secretsmanager \
--private-dns-enabled \
--profile ${AWS_PROFILE} --output table
aws ec2 describe-vpc-endpoint-services \
--service-names com.amazonaws.${REGION}.secretsmanager \
--profile ${AWS_PROFILE} --output table

1.5- Update the database Security Group

To allow lambda to connect the DB and also allow lambda to connect to cloud watch from the same VPC .

Note: Assuming that you have one Security Group for all the databases in same region and using same port for all the databases , if you are using diffrent port or Security Group you have to update each Security Group with the DB port

-> get the VPC CIDR

aws ec2 describe-vpcs \
--vpc-ids ${VPC_ID} \
--query "Vpcs[*].[CidrBlock]" \
--profile ${AWS_PROFILE} --output table

-> set below env variable

export VPC_CIDR=  < >
echo $VPC_CIDR

-> Add cloud watch port

aws ec2 authorize-security-group-ingress  \
--group-id ${SECURITYGROUPID}  \
--protocol tcp \
--port 443 \
--cidr ${VPC_CIDR} \
--profile ${AWS_PROFILE} --output table

-> Add the DB port

aws ec2 authorize-security-group-ingress  \
--group-id ${SECURITYGROUPID}  \
--protocol tcp \
--port ${DB_PORT} \
--cidr ${VPC_CIDR} \
--profile ${AWS_PROFILE} --output table  
 aws ec2 describe-security-groups --group-ids ${SECURITYGROUPID} \
 --profile ${AWS_PROFILE} --output table

2- For each Database follow below steps

2.1 Create a database user

Notes:

  • The default database user will be user_pgcm if you want to change it you need to edit the DB user creation script
  • you need psql to be able to connect to the postgresql DB and run DB user creation script

--> If the AWS Secrets Manager or username/password will be used as authentication type then use create_database_user_pwd_pgcm.sql to create the DB user .

login to the DB using the master user then execute below script

cd scripts
psql -h [hostname or RDS endpoint] -p [Port] -d [Database name ] -U [user name]
\i  create_database_user_pwd_pgcm.sql

--> If IAM Database Authentication will be used as authentication type then use create_database_user_iam_pgcm.sql script to create the DB user .

1- Enabling IAM database authentication

you have to Enable the IAM database authentication to use the IAM Database Authentication. please refere to RDS Doc for how to enable IAM DB authentication

Also you you can use AWS CLI to check and enable the IAMDB DB authentication

-> Set AWS_PROFILE as environment variable

export AWS_PROFILE= < >

For Aurora PostgreSQL:

->  set Aurora PostgreSQL CLUSTER IDENTIFIER as environment variable 

export APG_CLUSTER_IDENTIFIER= < >

-> To check the IADM DB authentication stattus 

aws rds  describe-db-clusters --db-cluster-identifier ${APG_CLUSTER_IDENTIFIER} \
--profile ${AWS_PROFILE} --output table | grep IAMDatabaseAuthenticationEnabled


-> Enable the IAMDB DB authentication 

aws rds modify-db-cluster --db-cluster-identifier ${APG_CLUSTER_IDENTIFIER} \
--enable-iam-database-authentication  --apply-immediately \
--profile ${AWS_PROFILE} --output table

aws rds  describe-db-clusters --db-cluster-identifier ${APG_CLUSTER_IDENTIFIER} --profile ${AWS_PROFILE} --output table | grep available


For RDS PostgreSQL:


->  Set RDS PostgreSQL DB INSTANCE IDENTIFIER as environment variable 

export DB_INSTANCE_IDENTIFIER= < >

-> Enable the IAMDB DB authentication 

aws rds describe-db-instances --db-instance-identifier ${DB_INSTANCE_IDENTIFIER} \
--profile ${AWS_PROFILE} --output table | grep IAMDatabaseAuthenticationEnabled

aws rds modify-db-instance --db-instance-identifier ${DB_INSTANCE_IDENTIFIER} \
--enable-iam-database-authentication  --apply-immediately \
--profile ${AWS_PROFILE} --output table

2- Create DB user :

login to the DB using the master user then execute below script

cd scripts
psql -h [hostname or RDS endpoint] -p [Port] -d [Database name ] -U [user name]
\i  create_database_user_iam_pgcm.sql

2.2 Use cloudformation to deploy the PGCM lambda function

This cloudformation will create below

1- lambda function
2- IAM role and policies 
3- AWS secret if you AWS Secrets Manager got selected as authentication type
4- CLoud watch Dashbord for the database Metrics  

cloud formation template location and name : CF/PGCM_lambda_CF.yaml

Creating a stack using the AWS CloudFormation console

1- Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation and select Create a new stack

2- choose a stack template:

On the Specify template page, choose a stack template by Uploading a template file Select a CloudFormation template on your local computer.

3- on Specify stack details

Enter the stack name : < DB_INSTANCE_IDENTIFIER >-PGCM

then update the Parameters



2.3 Use cloudformation to deploy the PGCM table metrics dashboard (per table)

This cloudformation will create CLoud watch Dashbord for table metric. You need to use this cloudformation for each table you need to creat dashboard of it .

cloud formation template location and name : CF/PGCM_Table_metrics_Dashboard.yaml

1- Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation and select Create a new stack

2- choose a stack template: On the Specify template page, choose a stack template by Uploading a template file Select a CloudFormation template on your local computer.

3- on Specify stack details Enter the stack name : < DB_INSTANCE_IDENTIFIER >-< Table_Name >-Table-PGCM

then update the Parameters

2.4 Use cloudformation to deploy the PGCM query metrics dashboard (per query ID)

use below query to list the top 20 query that consume the DB time and select the query ID that you want to create Dashboared for

select  queryid,substring(query,1,60) as query , calls, 
round(total_time::numeric, 2) as total_time_Msec, 
round((total_time::numeric/1000), 2) as total_time_sec,
round(mean_time::numeric,2) as avg_time_Msec,
round((mean_time::numeric/1000),2) as avg_time_sec,
round(stddev_time::numeric, 2) as standard_deviation_time_Msec, 
round((stddev_time::numeric/1000), 2) as standard_deviation_time_sec, 
round(rows::numeric/calls,2) rows_per_exec,
round((100 * total_time / sum(total_time) over ())::numeric, 4) as percent
from pg_stat_statements 
order by percent desc limit 20;

cloud formation template location and name : CF/PGCM_QueryId_metrics_Dashboard.yaml

1- Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation and select Create a new stack

2- choose a stack template: On the Specify template page, choose a stack template by Uploading a template file Select a CloudFormation template on your local computer.

3- on Specify stack details

Enter the stack name : < DB_INSTANCE_IDENTIFIER >- < query id >-queryid-PGCM

then update the Parameters

2.5 Use cloudformation to deploy cloudwatch alrams

Notes: this cloud formation template will provide basics alarms , you can edit the template to add more alarms, customize alarm Threshold and Period, add Notification etc.

cloud formation template location and name : CF/pgcm_alarm_cf.yaml

1- Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation and select Create a new stack

2- choose a stack template: On the Specify template page, choose a stack template by Uploading a template file Select a CloudFormation template on your local computer.

3- on Specify stack details

Enter the stack name : < DB_INSTANCE_IDENTIFIER >-PGCM-Alarm

then update the Parameters

FAQ :

  • will PGCM change or access my data ?

No, PGCM will not change or access your data, PGCM will read postgresql performance data only as PCGM DB user have only pg_monitor role pg_monitor Read/execute various monitoring views and functions. This role is a member of pg_read_all_settings, pg_read_all_stats and pg_stat_scan_tables.

  • will PGCM flood my DB with many connection ?

No, PGCM DB user is limited by two session only so PGCM will not flood your DB with connection PGCM will start to fail if there is 2 session in the DB

  • will PGCM cause any long running query ?

No , PGCM will set statement_timeout = 10sec in session level , if there is any query take more than 10 sec it will be terminated automatically

  • Dose PGCM support/use SSL ?

Yes it does, PGCM use RDS SSL by default and it is using the following certificate https://s3.amazonaws.com/rds-downloads/rds-ca-2019-root.pem.

Root cert location and name : pgcm/certs/commercial/rds-ca-2019-root.pem

if you want to use different certificate please refer to RDS docs https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.SSL.html

please update pgcm/rds_config.py with the new certificate name

# RDS CA CERT
# for more info https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.SSL.html
CA_CERT="certs/commercial/rds-ca-2019-root.pem"

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

About

PG Counter Metrics ( PGCM ) is a tool for publishing PostgreSQL performance data to CloudWatch. By publishing to CloudWatch, dashboards and alarming can be used on the collected data.

Topics

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Packages

No packages published