Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

pass additional info for fix untrained tokens when using distributed + offloading #2388

Merged
merged 7 commits into from
Mar 11, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -62,5 +62,5 @@ antlr4-python3-runtime==4.13.2
torchao==0.7.0
schedulefree==1.3.0

axolotl-contribs-lgpl==0.0.3
axolotl-contribs-lgpl==0.0.6
axolotl-contribs-mit==0.0.3
22 changes: 12 additions & 10 deletions src/axolotl/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
import sys
import weakref
from pathlib import Path
from typing import Any
from typing import Any, Dict

import torch
import transformers.modelcard
Expand All @@ -20,7 +20,7 @@
from transformers.trainer import Trainer

from axolotl.common.datasets import TrainDatasetMeta
from axolotl.contribs.lgpl.unsloth import ( # pylint: disable = no-name-in-module
from axolotl.contribs.lgpl import ( # pylint: disable = no-name-in-module
fix_untrained_tokens,
)
from axolotl.core.trainer_builder import HFCausalTrainerBuilder, HFRLTrainerBuilder
Expand Down Expand Up @@ -382,21 +382,23 @@ def handle_untrained_tokens_fix(
if not cfg.fix_untrained_tokens:
return

is_ds_zero3: bool = False
if os.environ.get("ACCELERATE_DEEPSPEED_ZERO_STAGE") == "3":
is_ds_zero3 = True

# Check if the `token_ids_to_fix` kwarg exists in the fix_untrained_tokens args
sig = inspect.signature(fix_untrained_tokens)

fix_kwargs: Dict[str, Any] = {}
# If the function has the `token_ids_to_fix` arg, and fix_untrained_tokens is a list
if "token_ids_to_fix" in sig.parameters and isinstance(
cfg.fix_untrained_tokens, list
):
fix_untrained_tokens(
model,
tokenizer,
train_dataset,
token_ids_to_fix=cfg.fix_untrained_tokens,
)
else:
fix_untrained_tokens(model, tokenizer, train_dataset)
fix_kwargs["token_ids_to_fix"] = cfg.fix_untrained_tokens
if "is_ds_zero3" in sig.parameters:
fix_kwargs["is_ds_zero3"] = is_ds_zero3

fix_untrained_tokens(model, tokenizer, train_dataset, **fix_kwargs)

if cfg.local_rank == 0:
model.save_pretrained(
Expand Down
63 changes: 63 additions & 0 deletions tests/e2e/multigpu/test_llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -750,3 +750,66 @@ def test_ds_zero1_packed(self, temp_dir, gradient_accumulation_steps, qlora):
check_tensorboard(
temp_dir + "/runs", "train/train_loss", 2.3, "Train Loss is too high"
)

def test_fix_untrained_tokens(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "HuggingFaceTB/SmolLM2-135M",
"fix_untrained_tokens": True,
"sequence_len": 512,
"val_set_size": 0.0,
"special_tokens": {
"pad_token": "<|endoftext|>",
"bos_token": "<|custom_im_start|>",
"eos_token": "<|custom_im_end|>",
},
"datasets": [
{
"chat_template": "jinja",
"chat_template_jinja": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|custom_im_start|>' + message['role'] + '\n' + message['content'] + '<|custom_im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|custom_im_start|>assistant\n' }}{% endif %}",
"path": "mlabonne/FineTome-100k",
"type": "chat_template",
"split": "train[:10%]",
"field_messages": "conversations",
"message_field_role": "from",
"message_field_content": "value",
},
],
"num_epochs": 1,
"max_steps": 5,
"micro_batch_size": 1,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_torch_fused",
"lr_scheduler": "cosine",
"flash_attention": True,
"sample_packing": True,
"bf16": True,
"save_safetensors": True,
"deepspeed": str(AXOLOTL_ROOT / "deepspeed_configs/zero3_bf16.json"),
"use_tensorboard": True,
}
)

# write cfg to yaml file
Path(temp_dir).mkdir(parents=True, exist_ok=True)
with open(Path(temp_dir) / "config.yaml", "w", encoding="utf-8") as fout:
fout.write(yaml.dump(cfg.to_dict(), Dumper=yaml.Dumper))

execute_subprocess_async(
[
"axolotl",
"train",
str(Path(temp_dir) / "config.yaml"),
"--num-processes",
"2",
"--main-process-port",
f"{get_torch_dist_unique_port()}",
]
)

check_tensorboard(
temp_dir + "/runs", "train/train_loss", 4.0, "Train Loss is too high"
)
48 changes: 48 additions & 0 deletions tests/e2e/test_llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,54 @@ def test_fft_trust_remote_code(self, temp_dir):
check_model_output_exists(temp_dir, cfg)

def test_fix_untrained_tokens(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "HuggingFaceTB/SmolLM2-135M",
"fix_untrained_tokens": True,
"sequence_len": 512,
"val_set_size": 0.0,
"special_tokens": {
"pad_token": "<|endoftext|>",
"bos_token": "<|custom_im_start|>",
"eos_token": "<|custom_im_end|>",
},
"datasets": [
{
"chat_template": "jinja",
"chat_template_jinja": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|custom_im_start|>' + message['role'] + '\n' + message['content'] + '<|custom_im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|custom_im_start|>assistant\n' }}{% endif %}",
"path": "mlabonne/FineTome-100k",
"type": "chat_template",
"split": "train[:10%]",
"field_messages": "conversations",
"message_field_role": "from",
"message_field_content": "value",
},
],
"num_epochs": 1,
"max_steps": 5,
"micro_batch_size": 1,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_8bit",
"lr_scheduler": "cosine",
"flash_attention": True,
"sample_packing": True,
"bf16": True,
"save_safetensors": True,
}
)

cfg = validate_config(cfg)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)

train(cfg=cfg, dataset_meta=dataset_meta)
check_model_output_exists(temp_dir, cfg)

def test_fix_untrained_tokens_already_trained(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
Expand Down
Loading