Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

release v0.3.3 #19

Merged
merged 1 commit into from
Apr 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Cargo.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ cargo-features = ["profile-rustflags"]

[package]
name = "polars_ols"
version = "0.3.2"
version = "0.3.3"
edition = "2021"

[lib]
Expand Down
3 changes: 2 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ df = pl.DataFrame({"y": [1.16, -2.16, -1.57, 0.21, 0.22, 1.6, -2.11, -2.92, -0.8
"weights": [0.34, 0.97, 0.39, 0.8, 0.57, 0.41, 0.19, 0.87, 0.06, 0.34],
})

lasso_expr = pl.col("y").least_squares.lasso(pl.col("x1"), pl.col("x2"), alpha=0.0001, add_intercept=True).over("group")
lasso_expr = pl.col("y").least_squares.lasso("x1", "x2", alpha=0.0001, add_intercept=True).over("group")
wls_expr = pls.compute_least_squares_from_formula("y ~ x1 + x2 -1", sample_weights=pl.col("weights"))

predictions = df.with_columns(lasso_expr.round(2).alias("predictions_lasso"),
Expand Down Expand Up @@ -154,6 +154,7 @@ Currently, this extension package supports the following variants:
- Weighted Least Squares: ```least_squares.wls```
- Regularized Least Squares (Lasso / Ridge / Elastic Net) ```least_squares.{lasso, ridge, elastic_net}```
- Non-negative Least Squares: ```least_squares.nnls```
- Multi-target Least Squares: ```least_squares.multi_target_ols```

As well as efficient implementations of moving window models:
- Recursive Least Squares: ```least_squares.rls```
Expand Down
33 changes: 15 additions & 18 deletions polars_ols/least_squares.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,7 @@
_VALID_NULL_POLICIES: Set[NullPolicy] = set(get_args(NullPolicy))
_VALID_OUTPUT_MODES: Set[OutputMode] = set(get_args(OutputMode))
_VALID_SOLVE_METHODS: Set[SolveMethod] = set(get_args(SolveMethod)).union({None})
_EPSILON: float = 1.0e-12


@dataclass
Expand Down Expand Up @@ -190,7 +191,8 @@ def _pre_process_data(
# handle sample weights
sqrt_w: Optional[pl.Expr] = None
if sample_weights is not None:
sqrt_w = parse_into_expr(sample_weights).sqrt()
# missing sample weights are assumed to be minimal 'epsilon' weight
sqrt_w = parse_into_expr(sample_weights).sqrt().fill_null(_EPSILON)
target *= sqrt_w
features = [(expr * sqrt_w) for expr in features]
return target, features, sqrt_w
Expand All @@ -211,22 +213,17 @@ def _register_least_squares_plugin(

# register either coefficient or prediction plugin functions
if mode == "coefficients":
# TODO: remove 'rename_fields' after https://github.com/pola-rs/pyo3-polars/issues/79
# it currently breaks input_wildcard_expansion=True correctly returning a struct.
return (
register_plugin_function(
plugin_path=Path(__file__).parent,
function_name=f"{function_name}_coefficients",
args=[target_fit, *features_fit],
kwargs=ols_kwargs.to_dict(),
is_elementwise=False,
changes_length=returns_scalar_coefficients,
returns_scalar=returns_scalar_coefficients,
input_wildcard_expansion=True,
)
.alias("coefficients")
.struct.rename_fields([f.meta.output_name() for f in features_fit])
)
return register_plugin_function(
plugin_path=Path(__file__).parent,
function_name=f"{function_name}_coefficients",
args=[target_fit, *features_fit],
kwargs=ols_kwargs.to_dict(),
is_elementwise=False,
changes_length=returns_scalar_coefficients,
returns_scalar=returns_scalar_coefficients,
input_wildcard_expansion=True,
pass_name_to_apply=True,
).alias("coefficients")
else:
predictions = register_plugin_function(
plugin_path=Path(__file__).parent,
Expand All @@ -237,7 +234,7 @@ def _register_least_squares_plugin(
input_wildcard_expansion=True,
)
if sqrt_w is not None:
predictions /= sqrt_w # undo the scaling implicit in WLS weighting
predictions *= 1.0 / sqrt_w # undo the scaling implicit in WLS weighting
if mode == "predictions":
return predictions
else:
Expand Down
5 changes: 5 additions & 0 deletions src/least_squares.rs
Original file line number Diff line number Diff line change
Expand Up @@ -252,6 +252,11 @@ pub fn solve_multi_target(
alpha: Option<f64>,
rcond: Option<f64>,
) -> Array2<f64> {
// handle degenerate case of no data
if x.is_empty() {
return Array2::zeros((x.ncols(), y.ncols())); // n_features x n_targets
}
// Choose SVD implementation based on L2 regularization
let alpha = alpha.unwrap_or(0.0);
if alpha > 0.0 {
solve_ridge_svd(y, x, alpha, rcond)
Expand Down
45 changes: 17 additions & 28 deletions tests/test_ols.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,7 @@ def test_multi_target_regression(alpha, mode, null_policy):
n_features=3,
add_missing=null_policy not in {"zero", "ignore"},
missing_columns=("x1",),
n_groups=3,
)
df = df.with_columns(
pl.struct(
Expand All @@ -104,24 +105,24 @@ def test_multi_target_regression(alpha, mode, null_policy):
multi_target = df.select(
compute_multi_target_least_squares(
"y",
"x1",
"x2",
"x3",
pl.col("^x.*$"),
mode=mode,
ols_kwargs=ols_kwargs,
).alias(mode)
)
.over("group")
.alias(mode)
)

with timer("compute multiple linear regressions"):
expected = df.unnest("y").select(
compute_least_squares(
target,
"x1",
"x2",
"x3",
pl.col("^x.*$"),
mode=mode,
ols_kwargs=ols_kwargs,
).alias(target)
)
.over("group")
.alias(target)
for target in ("y1", "y2", "y3")
)

Expand All @@ -131,25 +132,15 @@ def test_multi_target_regression(alpha, mode, null_policy):
def test_fit_missing_data_coefficients():
df = _make_data(add_missing=True)

# # in presence of unhandled nulls assert the rust library raises ComputeError
# with pytest.raises(pl.exceptions.ComputeError):
# df.select(
# pl.col("y").least_squares.ols(
# pl.col("x1"), pl.col("x2"), null_policy="ignore", mode="coefficients"
# )
# )

# test rust zero policy is sane
assert np.allclose(
df.select(
pl.col("y").least_squares.ols(
pl.col("x1"), pl.col("x2"), null_policy="zero", mode="coefficients"
)
pl.col("y").least_squares.ols(pl.col("^x.*$"), null_policy="zero", mode="coefficients")
).unnest("coefficients"),
df.fill_null(0.0)
.select(
pl.col("y").least_squares.ols(
pl.col("x1"), pl.col("x2"), null_policy="ignore", mode="coefficients"
pl.col("^x.*$"), null_policy="ignore", mode="coefficients"
)
)
.unnest("coefficients"),
Expand All @@ -158,14 +149,12 @@ def test_fit_missing_data_coefficients():
# test rust drop (any) policy is sane
assert np.allclose(
df.select(
pl.col("y").least_squares.ols(
pl.col("x1"), pl.col("x2"), null_policy="drop", mode="coefficients"
)
pl.col("y").least_squares.ols(pl.col("^x.*$"), null_policy="drop", mode="coefficients")
).unnest("coefficients"),
df.drop_nulls()
.select(
pl.col("y").least_squares.ols(
pl.col("x1"), pl.col("x2"), null_policy="ignore", mode="coefficients"
pl.col("^x.*$"), null_policy="ignore", mode="coefficients"
)
)
.unnest("coefficients"),
Expand All @@ -175,14 +164,14 @@ def test_fit_missing_data_coefficients():
assert np.allclose(
df.select(
pl.col("y").least_squares.ols(
pl.col("x1"), pl.col("x2"), null_policy="drop_y_zero_x", mode="coefficients"
pl.col("^x.*$"), null_policy="drop_y_zero_x", mode="coefficients"
)
).unnest("coefficients"),
df.drop_nulls(subset=["y"])
.fill_null(0.0)
.select(
pl.col("y").least_squares.ols(
pl.col("x1"), pl.col("x2"), null_policy="ignore", mode="coefficients"
pl.col("^x.*$"), null_policy="ignore", mode="coefficients"
)
)
.unnest("coefficients"),
Expand Down Expand Up @@ -393,7 +382,7 @@ def test_coefficients_ols_groups():
df.select(
"group",
pl.col("y")
.least_squares.from_formula("x1 + x2 -1", mode="coefficients")
.least_squares.ols(pl.col("^x.*$"), mode="coefficients")
.over("group")
.alias("coefficients"),
)
Expand All @@ -406,7 +395,7 @@ def test_coefficients_ols_groups():
df.filter(pl.col("group") == 1)
.select(
pl.col("y")
.least_squares.from_formula("x1 + x2 -1", mode="coefficients")
.least_squares.ols(pl.col("^x.*$"), mode="coefficients")
.alias("coefficients")
)
.unnest("coefficients")
Expand Down
Loading