Skip to content

badrmarani/image-denoiser

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

41 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Variational Image Denoising

In this project, we implemented Total Variation Minimization, in image denoising, using Fixed-Point algorithm and Projected Gradient Descent algorithm.

Installation

Dependencies

All of these Python dependencies, can be installed with pip install -r requirements.txt inside the root Image folder.

Quick example usage

Evaluate Chambolle1 (Semi-implicit gradient descent algorithm applied to ROF) on girl.jpg.

python main.py --max-iter 50 --sigma 50 --L 60 --epsilon 1e-4 --step-size .2

Note: By default, images are denoised using chambolle1 method.

Output

Processing : houses.jpg
> Variational Method: cham1
   Number of iterations    Mean    Noise    Lambda    Step size    Epsilon
-----------------------  ------  -------  --------  -----------  ---------
                     50       0       50        60          0.2       1e-4
First layer
100%|##########################################################| 50/50 [00:36<01:30,  1.61it/s]
Second layer
100%|##########################################################| 50/50 [00:40<02:07,  1.14it/s]
Third layer
100%|##########################################################| 50/50 [00:41<01:41,  1.40it/s]

Time spent is: 120.41364026069641

Processing : lenna.jpg
100%|##########################################################| 50/50 [00:08<00:26,  5.66it/s]

Time spent is: 128.97879600524902

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published