In this project, we implemented Total Variation Minimization, in image denoising, using Fixed-Point algorithm and Projected Gradient Descent algorithm.
All of these Python dependencies, can be installed with pip install -r requirements.txt
inside the root Image folder.
Evaluate Chambolle1 (Semi-implicit gradient descent algorithm applied to ROF) on girl.jpg
.
python main.py --max-iter 50 --sigma 50 --L 60 --epsilon 1e-4 --step-size .2
Note: By default, images are denoised using chambolle1
method.
Processing : houses.jpg
> Variational Method: cham1
Number of iterations Mean Noise Lambda Step size Epsilon
----------------------- ------ ------- -------- ----------- ---------
50 0 50 60 0.2 1e-4
First layer
100%|##########################################################| 50/50 [00:36<01:30, 1.61it/s]
Second layer
100%|##########################################################| 50/50 [00:40<02:07, 1.14it/s]
Third layer
100%|##########################################################| 50/50 [00:41<01:41, 1.40it/s]
Time spent is: 120.41364026069641
Processing : lenna.jpg
100%|##########################################################| 50/50 [00:08<00:26, 5.66it/s]
Time spent is: 128.97879600524902