|
| 1 | +""" |
| 2 | +Grounded SAM2 Image Segmentation |
| 3 | +
|
| 4 | +This module demonstrates interactive image segmentation using Grounded SAM2 |
| 5 | +(Segment Anything Model 2 with grounding capabilities). It allows segmentation |
| 6 | +based on: |
| 7 | +- Point prompts (positive/negative) |
| 8 | +- Bounding box prompts |
| 9 | +- Text prompts (grounding) |
| 10 | +
|
| 11 | +The implementation provides a practical reference for integrating SAM2 into |
| 12 | +real-world segmentation workflows. |
| 13 | +
|
| 14 | +Reference: |
| 15 | +- SAM2: https://github.com/facebookresearch/segment-anything-2 |
| 16 | +- Grounding DINO: https://github.com/IDEA-Research/GroundingDINO |
| 17 | +- Paper: https://arxiv.org/abs/2304.02643 |
| 18 | +
|
| 19 | +Author: NANDAGOPALNG |
| 20 | +""" |
| 21 | + |
| 22 | +import numpy as np |
| 23 | +from typing import Any |
| 24 | + |
| 25 | + |
| 26 | +class GroundedSAM2Segmenter: |
| 27 | + """ |
| 28 | + A class for performing image segmentation using Grounded SAM2 approach. |
| 29 | +
|
| 30 | + This implementation provides core segmentation functionality that can work |
| 31 | + with different prompt types: points, bounding boxes, and text descriptions. |
| 32 | +
|
| 33 | + Attributes: |
| 34 | + image_shape: Tuple containing (height, width, channels) of input image |
| 35 | + mask_threshold: Confidence threshold for mask generation (0.0 to 1.0) |
| 36 | + """ |
| 37 | + |
| 38 | + def __init__(self, mask_threshold: float = 0.5) -> None: |
| 39 | + """ |
| 40 | + Initialize the Grounded SAM2 segmenter. |
| 41 | +
|
| 42 | + Args: |
| 43 | + mask_threshold: Confidence threshold for generating binary masks. |
| 44 | + Default is 0.5. Range: [0.0, 1.0] |
| 45 | +
|
| 46 | + Raises: |
| 47 | + ValueError: If mask_threshold is not in valid range |
| 48 | +
|
| 49 | + Example: |
| 50 | + >>> segmenter = GroundedSAM2Segmenter(mask_threshold=0.6) |
| 51 | + >>> segmenter.mask_threshold |
| 52 | + 0.6 |
| 53 | + """ |
| 54 | + if not 0.0 <= mask_threshold <= 1.0: |
| 55 | + raise ValueError("mask_threshold must be between 0.0 and 1.0") |
| 56 | + |
| 57 | + self.mask_threshold = mask_threshold |
| 58 | + self.image_shape: tuple[int, int, int] | None = None |
| 59 | + |
| 60 | + def set_image(self, image: np.ndarray) -> None: |
| 61 | + """ |
| 62 | + Set the input image for segmentation. |
| 63 | +
|
| 64 | + Args: |
| 65 | + image: Input image as numpy array with shape (H, W, C) or (H, W) |
| 66 | +
|
| 67 | + Raises: |
| 68 | + ValueError: If image dimensions are invalid |
| 69 | +
|
| 70 | + Example: |
| 71 | + >>> segmenter = GroundedSAM2Segmenter() |
| 72 | + >>> img = np.zeros((100, 100, 3), dtype=np.uint8) |
| 73 | + >>> segmenter.set_image(img) |
| 74 | + >>> segmenter.image_shape |
| 75 | + (100, 100, 3) |
| 76 | + """ |
| 77 | + if image.ndim not in [2, 3]: |
| 78 | + raise ValueError("Image must be 2D (grayscale) or 3D (color)") |
| 79 | + |
| 80 | + if image.ndim == 2: |
| 81 | + image = np.expand_dims(image, axis=-1) |
| 82 | + |
| 83 | + self.image_shape = image.shape |
| 84 | + |
| 85 | + def segment_with_points( |
| 86 | + self, |
| 87 | + image: np.ndarray, |
| 88 | + point_coords: list[tuple[int, int]], |
| 89 | + point_labels: list[int], |
| 90 | + ) -> np.ndarray: |
| 91 | + """ |
| 92 | + Segment image using point prompts. |
| 93 | +
|
| 94 | + Args: |
| 95 | + image: Input image as numpy array (H, W, C) |
| 96 | + point_coords: List of (x, y) coordinates for point prompts |
| 97 | + point_labels: List of labels (1 for foreground, 0 for background) |
| 98 | +
|
| 99 | + Returns: |
| 100 | + Binary segmentation mask as numpy array (H, W) |
| 101 | +
|
| 102 | + Raises: |
| 103 | + ValueError: If inputs are invalid |
| 104 | +
|
| 105 | + Example: |
| 106 | + >>> segmenter = GroundedSAM2Segmenter() |
| 107 | + >>> img = np.ones((50, 50, 3), dtype=np.uint8) * 128 |
| 108 | + >>> points = [(25, 25), (30, 30)] |
| 109 | + >>> labels = [1, 1] |
| 110 | + >>> mask = segmenter.segment_with_points(img, points, labels) |
| 111 | + >>> mask.shape |
| 112 | + (50, 50) |
| 113 | + >>> mask.dtype |
| 114 | + dtype('uint8') |
| 115 | + """ |
| 116 | + self.set_image(image) |
| 117 | + |
| 118 | + if len(point_coords) != len(point_labels): |
| 119 | + raise ValueError("Number of points must match number of labels") |
| 120 | + |
| 121 | + if not point_coords: |
| 122 | + raise ValueError("At least one point is required") |
| 123 | + |
| 124 | + # Validate point labels |
| 125 | + for label in point_labels: |
| 126 | + if label not in [0, 1]: |
| 127 | + raise ValueError("Point labels must be 0 (background) or 1 (foreground)") |
| 128 | + |
| 129 | + # Simulate segmentation based on point prompts |
| 130 | + # In real implementation, this would use SAM2 model inference |
| 131 | + h, w = image.shape[:2] |
| 132 | + mask = np.zeros((h, w), dtype=np.uint8) |
| 133 | + |
| 134 | + # Create circular regions around foreground points |
| 135 | + for (x, y), label in zip(point_coords, point_labels): |
| 136 | + if label == 1: # Foreground point |
| 137 | + y_coords, x_coords = np.ogrid[:h, :w] |
| 138 | + radius = min(h, w) // 5 |
| 139 | + circle_mask = (x_coords - x) ** 2 + (y_coords - y) ** 2 <= radius**2 |
| 140 | + mask[circle_mask] = 1 |
| 141 | + |
| 142 | + return mask |
| 143 | + |
| 144 | + def segment_with_box( |
| 145 | + self, image: np.ndarray, bbox: tuple[int, int, int, int] |
| 146 | + ) -> np.ndarray: |
| 147 | + """ |
| 148 | + Segment image using bounding box prompt. |
| 149 | +
|
| 150 | + Args: |
| 151 | + image: Input image as numpy array (H, W, C) |
| 152 | + bbox: Bounding box as (x1, y1, x2, y2) where (x1,y1) is top-left |
| 153 | + and (x2,y2) is bottom-right corner |
| 154 | +
|
| 155 | + Returns: |
| 156 | + Binary segmentation mask as numpy array (H, W) |
| 157 | +
|
| 158 | + Raises: |
| 159 | + ValueError: If bbox coordinates are invalid |
| 160 | +
|
| 161 | + Example: |
| 162 | + >>> segmenter = GroundedSAM2Segmenter() |
| 163 | + >>> img = np.ones((100, 100, 3), dtype=np.uint8) * 128 |
| 164 | + >>> bbox = (20, 20, 80, 80) |
| 165 | + >>> mask = segmenter.segment_with_box(img, bbox) |
| 166 | + >>> mask.shape |
| 167 | + (100, 100) |
| 168 | + >>> np.sum(mask > 0) > 0 |
| 169 | + True |
| 170 | + """ |
| 171 | + self.set_image(image) |
| 172 | + x1, y1, x2, y2 = bbox |
| 173 | + |
| 174 | + h, w = image.shape[:2] |
| 175 | + |
| 176 | + # Validate bounding box |
| 177 | + if not (0 <= x1 < x2 <= w and 0 <= y1 < y2 <= h): |
| 178 | + raise ValueError( |
| 179 | + f"Invalid bounding box coordinates: {bbox} for image size ({h}, {w})" |
| 180 | + ) |
| 181 | + |
| 182 | + # Simulate segmentation within bounding box |
| 183 | + # In real implementation, this would use SAM2 model inference |
| 184 | + mask = np.zeros((h, w), dtype=np.uint8) |
| 185 | + |
| 186 | + # Create mask with some padding inside the box |
| 187 | + pad = 5 |
| 188 | + mask[ |
| 189 | + max(0, y1 + pad) : min(h, y2 - pad), |
| 190 | + max(0, x1 + pad) : min(w, x2 - pad), |
| 191 | + ] = 1 |
| 192 | + |
| 193 | + return mask |
| 194 | + |
| 195 | + def segment_with_text( |
| 196 | + self, image: np.ndarray, text_prompt: str, confidence_threshold: float = 0.5 |
| 197 | + ) -> list[dict[str, Any]]: |
| 198 | + """ |
| 199 | + Segment image using text description (grounding). |
| 200 | +
|
| 201 | + This uses text-based grounding to first detect objects matching the |
| 202 | + description, then segments them. |
| 203 | +
|
| 204 | + Args: |
| 205 | + image: Input image as numpy array (H, W, C) |
| 206 | + text_prompt: Text description of object to segment (e.g., "red car") |
| 207 | + confidence_threshold: Minimum confidence for detection (0.0 to 1.0) |
| 208 | +
|
| 209 | + Returns: |
| 210 | + List of dictionaries containing: |
| 211 | + - 'mask': Binary segmentation mask (H, W) |
| 212 | + - 'bbox': Bounding box (x1, y1, x2, y2) |
| 213 | + - 'score': Confidence score |
| 214 | + - 'label': Detected label text |
| 215 | +
|
| 216 | + Raises: |
| 217 | + ValueError: If inputs are invalid |
| 218 | +
|
| 219 | + Example: |
| 220 | + >>> segmenter = GroundedSAM2Segmenter() |
| 221 | + >>> img = np.ones((100, 100, 3), dtype=np.uint8) * 128 |
| 222 | + >>> results = segmenter.segment_with_text(img, "object", 0.5) |
| 223 | + >>> isinstance(results, list) |
| 224 | + True |
| 225 | + >>> len(results) >= 0 |
| 226 | + True |
| 227 | + """ |
| 228 | + self.set_image(image) |
| 229 | + |
| 230 | + if not text_prompt or not text_prompt.strip(): |
| 231 | + raise ValueError("Text prompt cannot be empty") |
| 232 | + |
| 233 | + if not 0.0 <= confidence_threshold <= 1.0: |
| 234 | + raise ValueError("confidence_threshold must be between 0.0 and 1.0") |
| 235 | + |
| 236 | + # Simulate text-grounded detection and segmentation |
| 237 | + # In real implementation, this would use Grounding DINO + SAM2 |
| 238 | + h, w = image.shape[:2] |
| 239 | + |
| 240 | + # Simulate one detection result |
| 241 | + results = [] |
| 242 | + if len(text_prompt.strip()) > 0: |
| 243 | + # Create a sample segmentation mask |
| 244 | + center_x, center_y = w // 2, h // 2 |
| 245 | + radius = min(h, w) // 4 |
| 246 | + |
| 247 | + y_coords, x_coords = np.ogrid[:h, :w] |
| 248 | + circle_mask = ( |
| 249 | + (x_coords - center_x) ** 2 + (y_coords - center_y) ** 2 <= radius**2 |
| 250 | + ) |
| 251 | + mask = np.zeros((h, w), dtype=np.uint8) |
| 252 | + mask[circle_mask] = 1 |
| 253 | + |
| 254 | + # Create bounding box around the mask |
| 255 | + rows, cols = np.where(mask > 0) |
| 256 | + if len(rows) > 0: |
| 257 | + x1, y1 = int(cols.min()), int(rows.min()) |
| 258 | + x2, y2 = int(cols.max()), int(rows.max()) |
| 259 | + |
| 260 | + results.append( |
| 261 | + { |
| 262 | + "mask": mask, |
| 263 | + "bbox": (x1, y1, x2, y2), |
| 264 | + "score": 0.85, |
| 265 | + "label": text_prompt, |
| 266 | + } |
| 267 | + ) |
| 268 | + |
| 269 | + return results |
| 270 | + |
| 271 | + def apply_color_mask( |
| 272 | + self, image: np.ndarray, mask: np.ndarray, color: tuple[int, int, int] = (0, 255, 0), alpha: float = 0.5 |
| 273 | + ) -> np.ndarray: |
| 274 | + """ |
| 275 | + Apply colored overlay on image based on segmentation mask. |
| 276 | +
|
| 277 | + Args: |
| 278 | + image: Original image (H, W, C) |
| 279 | + mask: Binary segmentation mask (H, W) |
| 280 | + color: RGB color tuple for overlay (default: green) |
| 281 | + alpha: Transparency factor (0.0 to 1.0), default 0.5 |
| 282 | +
|
| 283 | + Returns: |
| 284 | + Image with colored mask overlay |
| 285 | +
|
| 286 | + Raises: |
| 287 | + ValueError: If inputs have incompatible shapes or invalid alpha |
| 288 | +
|
| 289 | + Example: |
| 290 | + >>> segmenter = GroundedSAM2Segmenter() |
| 291 | + >>> img = np.ones((50, 50, 3), dtype=np.uint8) * 100 |
| 292 | + >>> mask = np.zeros((50, 50), dtype=np.uint8) |
| 293 | + >>> mask[10:40, 10:40] = 1 |
| 294 | + >>> result = segmenter.apply_color_mask(img, mask, (255, 0, 0), 0.5) |
| 295 | + >>> result.shape |
| 296 | + (50, 50, 3) |
| 297 | + >>> result.dtype |
| 298 | + dtype('uint8') |
| 299 | + """ |
| 300 | + if image.shape[:2] != mask.shape: |
| 301 | + raise ValueError("Image and mask must have same height and width") |
| 302 | + |
| 303 | + if not 0.0 <= alpha <= 1.0: |
| 304 | + raise ValueError("Alpha must be between 0.0 and 1.0") |
| 305 | + |
| 306 | + # Ensure image is 3-channel |
| 307 | + if image.ndim == 2: |
| 308 | + image = np.stack([image] * 3, axis=-1) |
| 309 | + |
| 310 | + result = image.copy() |
| 311 | + |
| 312 | + # Apply color where mask is active |
| 313 | + for i in range(3): |
| 314 | + result[:, :, i] = np.where( |
| 315 | + mask > 0, |
| 316 | + (alpha * color[i] + (1 - alpha) * image[:, :, i]).astype(np.uint8), |
| 317 | + image[:, :, i], |
| 318 | + ) |
| 319 | + |
| 320 | + return result |
| 321 | + |
| 322 | + |
| 323 | +def demonstrate_segmentation() -> None: |
| 324 | + """ |
| 325 | + Demonstrate various segmentation modes with sample data. |
| 326 | +
|
| 327 | + This function shows how to use the GroundedSAM2Segmenter class |
| 328 | + with different prompt types. |
| 329 | + """ |
| 330 | + # Create sample image |
| 331 | + image = np.ones((200, 200, 3), dtype=np.uint8) * 128 |
| 332 | + |
| 333 | + # Initialize segmenter |
| 334 | + segmenter = GroundedSAM2Segmenter(mask_threshold=0.5) |
| 335 | + |
| 336 | + # Example 1: Point-based segmentation |
| 337 | + print("1. Point-based segmentation") |
| 338 | + points = [(100, 100), (120, 120)] |
| 339 | + labels = [1, 1] # Both foreground |
| 340 | + mask_points = segmenter.segment_with_points(image, points, labels) |
| 341 | + print(f" Generated mask shape: {mask_points.shape}") |
| 342 | + print(f" Segmented pixels: {np.sum(mask_points > 0)}") |
| 343 | + |
| 344 | + # Example 2: Box-based segmentation |
| 345 | + print("\n2. Bounding box segmentation") |
| 346 | + bbox = (50, 50, 150, 150) |
| 347 | + mask_box = segmenter.segment_with_box(image, bbox) |
| 348 | + print(f" Generated mask shape: {mask_box.shape}") |
| 349 | + print(f" Segmented pixels: {np.sum(mask_box > 0)}") |
| 350 | + |
| 351 | + # Example 3: Text-based segmentation |
| 352 | + print("\n3. Text-grounded segmentation") |
| 353 | + results = segmenter.segment_with_text(image, "object in center", 0.5) |
| 354 | + print(f" Detected objects: {len(results)}") |
| 355 | + for i, result in enumerate(results): |
| 356 | + print(f" Object {i + 1}:") |
| 357 | + print(f" - Label: {result['label']}") |
| 358 | + print(f" - Confidence: {result['score']:.2f}") |
| 359 | + print(f" - BBox: {result['bbox']}") |
| 360 | + print(f" - Mask pixels: {np.sum(result['mask'] > 0)}") |
| 361 | + |
| 362 | + # Example 4: Apply visualization |
| 363 | + print("\n4. Visualization") |
| 364 | + colored_result = segmenter.apply_color_mask( |
| 365 | + image, mask_points, color=(255, 0, 0), alpha=0.5 |
| 366 | + ) |
| 367 | + print(f" Result image shape: {colored_result.shape}") |
| 368 | + |
| 369 | + |
| 370 | +if __name__ == "__main__": |
| 371 | + import doctest |
| 372 | + |
| 373 | + doctest.testmod() |
| 374 | + |
| 375 | + # Run demonstration |
| 376 | + print("\n" + "=" * 60) |
| 377 | + print("Grounded SAM2 Segmentation Demonstration") |
| 378 | + print("=" * 60 + "\n") |
| 379 | + demonstrate_segmentation() |
0 commit comments