This is the implementation of the PoseGraphNet model proposed in the paper:
Banik, Soubarna, Alejandro Mendoza GarcÍa, and Alois Knoll. "3D human pose regression using graph convolutional network." 2021 IEEE International Conference on Image Processing (ICIP). IEEE, 2021.
Model | MPJPE (P1) |
---|---|
PoseGraphNet (Mask R-CNN) | 59.5 |
PoseGraphNet (CPN) | 52.8 |
Download Human3.6M from http://vision.imar.ro/human3.6m/ into data_dir. The directory structure should look like this
├── S1
├── S11
├── S5
├── S6
├── S7
├── S8
└── S9
└── MyPoseFeatures
├── D2_Positions
├── D3_Positions
└── D3_Positions_mono
Refer to VideoPose3D
cd data
wget https://dl.fbaipublicfiles.com/video-pose-3d/data_2d_h36m_cpn_ft_h36m_dbb.npz
wget https://dl.fbaipublicfiles.com/video-pose-3d/data_2d_h36m_detectron_ft_h36m.npz
python train_posegraphnet_singleloss.py --exp='experiment' --exp_suffix='run1' --run_suffix=1 --exp_desc="description" --data_dir='<DATA_DIR>' --cpn_file='<PATH TO CPN PREDICTED 2D POSE>'
set ds_category='gt' in params.json in experiment directory
python train_posegraphnet_singleloss.py --exp='experiment' --exp_suffix='run1' --run_suffix=1 --exp_desc="description" --data_dir='<DATA_DIR>'
python train_posegraphnet_singleloss.py --exp='icip_v2' --exp_suffix='run3' --run_suffix='1' --exp_desc='evaluate icip_v2/run3' --test --checkpoint='../models/icip_v2/run3/best.pth.tar' --data_dir='<DATA_DIR>' --cpn_file='<PATH TO CPN PREDICTED 2D POSE>'
If you use our code, please cite as follow:
@inproceedings{banik20213d, title={3D human pose regression using graph convolutional network}, author={Banik, Soubarna and Garc{'I}a, Alejandro Mendoza and Knoll, Alois}, booktitle={2021 IEEE International Conference on Image Processing (ICIP)}, pages={924--928}, year={2021}, organization={IEEE} }