Skip to content

This is the implementation of the PoseGraphNet model

License

Notifications You must be signed in to change notification settings

baniks/PoseGraphNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PoseGraphNet

This is the implementation of the PoseGraphNet model proposed in the paper:

Banik, Soubarna, Alejandro Mendoza GarcÍa, and Alois Knoll. "3D human pose regression using graph convolutional network." 2021 IEEE International Conference on Image Processing (ICIP). IEEE, 2021.

Results on Human3.6M

Model MPJPE (P1)
PoseGraphNet (Mask R-CNN) 59.5
PoseGraphNet (CPN) 52.8

Dataset Human3.6M

Download Human3.6M from http://vision.imar.ro/human3.6m/ into data_dir. The directory structure should look like this

├── S1
├── S11
├── S5
├── S6
├── S7
├── S8
└── S9
    └── MyPoseFeatures
        ├── D2_Positions
        ├── D3_Positions
        └── D3_Positions_mono

Donwload Mask R-CNN and CPN detections

Refer to VideoPose3D

cd data
wget https://dl.fbaipublicfiles.com/video-pose-3d/data_2d_h36m_cpn_ft_h36m_dbb.npz
wget https://dl.fbaipublicfiles.com/video-pose-3d/data_2d_h36m_detectron_ft_h36m.npz

To train the model

Using CPN Predicted 2D input

python train_posegraphnet_singleloss.py --exp='experiment' --exp_suffix='run1' --run_suffix=1 --exp_desc="description" --data_dir='<DATA_DIR>' --cpn_file='<PATH TO CPN PREDICTED 2D POSE>'

Using ground truth 2D input

set ds_category='gt' in params.json in experiment directory

python train_posegraphnet_singleloss.py --exp='experiment' --exp_suffix='run1' --run_suffix=1 --exp_desc="description" --data_dir='<DATA_DIR>'

To evaluate the model

python train_posegraphnet_singleloss.py --exp='icip_v2' --exp_suffix='run3' --run_suffix='1' --exp_desc='evaluate icip_v2/run3' --test --checkpoint='../models/icip_v2/run3/best.pth.tar' --data_dir='<DATA_DIR>' --cpn_file='<PATH TO CPN PREDICTED 2D POSE>'

Citation

If you use our code, please cite as follow:

@inproceedings{banik20213d, title={3D human pose regression using graph convolutional network}, author={Banik, Soubarna and Garc{'I}a, Alejandro Mendoza and Knoll, Alois}, booktitle={2021 IEEE International Conference on Image Processing (ICIP)}, pages={924--928}, year={2021}, organization={IEEE} }

About

This is the implementation of the PoseGraphNet model

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages