Skip to content
/ DINE Public

Diffeomorphic Information Neural Estimation (DINE) - AAAI 2023

Notifications You must be signed in to change notification settings

baosws/DINE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Diffeomorphic Information Neural Estimation (DINE)

This is the implementation of our paper: Bao Duong and Thin Nguyen. Diffeomorphic Information Neural Estimation. In AAAI Conference on Artificial Intelligence (AAAI 2023).

Dependencies

conda create -n dine python=3.8
conda activate dine
conda install pytorch -c pytorch
conda install numpy pandas seaborn matplotlib scikit-learn scipy
pip install pytorch-lightning==1.5.3 causal-learn==0.1.3.0 CCIT==0.4 tf-slim tensorflow

Note: causal-learn is for KCIT, CCIT is for CCIT, tensorflow is for CCMI & MIND, tensorflow & tf-slim are for CCMI. Please comment out or remove the lines related to these methods from src/methods/__init__.py if you don't want to install these dependencies.

Demo

from src.data.data_gen import simulate_mi, simulate_cmi, simulate_cit
from src.methods import DINE, DINE_CIT

N = 1000 # sample size
d = 5    # dimensionality of X and Y
dz = 5   # dimensionality of Z

print('-' * 30)
print('Mutual Information (MI) estimation')
X, Y, Z, mi = simulate_mi(N=N, d=d, rho=0.8, random_state=0) # here Z is empty
est = DINE(X=X, Y=Y, Z=Z, random_state=0)
print(f'Ground truth: {mi:.4f}')      # 2.5541
print(f'Estimation:   {est:.4f}\n\n') # 2.5777

print('-' * 30)
print('Conditional Mutual Information (CMI) estimation')
X, Y, Z, cmi = simulate_cmi(N=N, d=d, dz=dz, rho=0.5, random_state=1)
est = DINE(X=X, Y=Y, Z=Z, random_state=0)
print(f'Ground truth: {cmi:.4f}')      # 0.7192
print(f'Estimation:   {est:.4f}\n\n')  # 0.7168

print('-' * 30)
print('Conditional Independence testing')
X, Y, Z, indep = simulate_cit(N=N, d=1, dz=dz, indep=True, random_state=1)
p_value = DINE_CIT(X=X, Y=Y, Z=Z, random_state=0)
print(f'\tConditional Independent: {p_value = :.4f}') # 0.2500

X, Y, Z, indep = simulate_cit(N=N, d=1, dz=dz, indep=False, random_state=1)
p_value = DINE_CIT(X=X, Y=Y, Z=Z, random_state=0)
print(f'\tConditional Dependent:   {p_value = :.4f}') # 0.0000

Running experiments

For example, to run the "Conditional Mutual Information" experiment (Figure 2 in the paper):

python experiments/exp_cmi/main.py --methods DINE KSG CCMI --n_jobs=8

where available methods are DINE, MINE, MIND, KSG, CCMI, KCIT, DINE_CIT and n_jobs is the number of parallel jobs to run.

Modifiable configurations are stored in experiments/exp_*/config/, and result dataframes are stored in experiments/exp_*/results/ after the command is finished.

Citation

If you find our code helpful, please cite us as:

@inproceedings{duong2023diffeomorphic,
	author = {Duong, Bao and Nguyen, Thin},
	booktitle = {Proceedings of the AAAI Conference on Artificial Intelligence},
	pages = {7468-7475},
	title = {Diffeomorphic Information Neural Estimation},
	year = {2023}
}

Releases

No releases published

Packages

No packages published

Languages