Skip to content

bauzaj/Crypto-Clustering

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Crypto Market Analysis

Description

This project performs an analysis of the cryptocurrency market data using clustering techniques. It aims to identify patterns and group similar cryptocurrencies based on their price change percentage over different time periods. Two approaches are taken: one using the original data and another using Principal Component Analysis (PCA) to reduce the dimensionality of the data.

Installation

Clone the repository:

Usage

Import the required libraries and dependencies:

  • import pandas as pd
  • import hvplot.pandas
  • from sklearn.cluster import KMeans
  • from sklearn.decomposition import PCA
  • from sklearn.preprocessing import StandardScaler

Visualize the data using line plots

image

Prepare the data for clustering

df_market_data_scaled = StandardScaler().fit_transform(df_market_data[['price_change_percentage_24h', 'price_change_percentage_7d', 'price_change_percentage_14d', 'price_change_percentage_30d', 'price_change_percentage_60d', 'price_change_percentage_200d', 'price_change_percentage_1y']])

Perform clustering using the original data

  • model = KMeans(n_clusters=4, random_state=1)
  • predicted_clusters = model.fit_predict(df_market_data_scaled)
  • df_market_data_predicted = df_market_data_transformed.copy()
  • df_market_data_predicted['coin_clusters'] = predicted_clusters

Visualize the clusters using scatter plots

image

Perform clustering using PCA data

  • pca = PCA(n_components=3)
  • mrkt_data_pca = pca.fit_transform(df_market_data)
  • k_pca = KMeans(n_clusters=2)
  • k_pca = model.fit_predict(mrkt_data_pca)
  • mrkt_data_pca_prediction = mrkt_data_pca.copy()
  • mrkt_data_pca_prediction['coin_clusters'] = k_pca

Visualize the PCA clusters using scatter plots

image

Results

The project identifies clusters of cryptocurrencies based on their price change percentage over various time periods. The analysis is performed using both the original data and PCA-transformed data. Visualizations, such as line plots and scatter plots, are used to display the data and clusters

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published