forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[TF FE] Stabilize layer tests for Keras GRU layer on all platforms (o…
…penvinotoolkit#27543) **Details:** Stabilize layer tests for Keras GRU layer on all platforms **Ticket:** 156967 --------- Signed-off-by: Kazantsev, Roman <roman.kazantsev@intel.com>
- Loading branch information
Showing
2 changed files
with
36 additions
and
110 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
144 changes: 35 additions & 109 deletions
144
tests/layer_tests/tensorflow2_keras_tests/test_tf2_keras_gru.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,135 +1,61 @@ | ||
# Copyright (C) 2022-2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import numpy as np | ||
import pytest | ||
import tensorflow as tf | ||
|
||
from common.tf2_layer_test_class import CommonTF2LayerTest | ||
|
||
rng = np.random.default_rng(233534) | ||
|
||
|
||
class TestKerasGru(CommonTF2LayerTest): | ||
def create_keras_gru_net(self, input_names, input_shapes, input_type, units, activation, | ||
recurrent_activation, | ||
use_bias, dropouts, flags, ir_version): | ||
""" | ||
create TensorFlow 2 model with Keras GRU operation | ||
""" | ||
def _prepare_input(self, inputs_info): | ||
assert 'x' in inputs_info, "Test error: inputs_info must contain `x`" | ||
x_shape = inputs_info['x'] | ||
inputs_data = {} | ||
inputs_data['x'] = rng.uniform(-2.0, 2.0, x_shape).astype(self.input_type) | ||
return inputs_data | ||
|
||
def create_keras_gru_net(self, input_shapes, input_type, units, | ||
activation, recurrent_activation, | ||
dropouts, use_bias, flag1, flag2): | ||
self.input_type = input_type | ||
tf.keras.backend.clear_session() # For easy reset of notebook state | ||
x1 = tf.keras.Input(shape=input_shapes[0][1:], name=input_names[0]) | ||
x1 = tf.keras.Input(shape=input_shapes[0][1:], dtype=input_type, name='x') | ||
dropout, recurrent_dropout = dropouts | ||
go_backwards, reset_after = flags | ||
go_backwards, reset_after = flag1, flag2 | ||
y = tf.keras.layers.GRU(units=units, activation=activation, | ||
recurrent_activation=recurrent_activation, | ||
use_bias=use_bias, dropout=dropout, | ||
recurrent_dropout=recurrent_dropout, | ||
return_sequences=False, return_state=False, | ||
go_backwards=go_backwards, reset_after=reset_after)(x1) | ||
tf2_net = tf.keras.Model(inputs=[x1], outputs=[y]) | ||
|
||
# TODO: add reference IR net. Now it is omitted since inference is more | ||
# important and needs to be checked in the first | ||
ref_net = None | ||
|
||
return tf2_net, ref_net | ||
|
||
test_data_simple = [ | ||
dict(input_names=["x"], input_shapes=[[2, 2, 3]], input_type=tf.float32, units=1, | ||
activation='tanh', recurrent_activation='sigmoid', dropouts=(.0, .3), use_bias=True, | ||
flags=(False, False)), | ||
dict(input_names=["x"], input_shapes=[[1, 2, 3]], input_type=tf.float32, units=4, | ||
activation='relu', recurrent_activation='sigmoid', dropouts=(.2, .4), use_bias=True, | ||
flags=(False, False)), | ||
dict(input_names=["x"], input_shapes=[[3, 2, 3]], input_type=tf.float32, units=2, | ||
activation='elu', recurrent_activation='tanh', dropouts=(.3, .5), use_bias=True, | ||
flags=(False, False)), | ||
dict(input_names=["x"], input_shapes=[[2, 3, 4]], input_type=tf.float32, units=1, | ||
activation='elu', recurrent_activation='softmax', dropouts=(.0, .5), use_bias=True, | ||
flags=(False, False)), | ||
dict(input_names=["x"], input_shapes=[[1, 3, 4]], input_type=tf.float32, units=3, | ||
activation='linear', recurrent_activation='sigmoid', dropouts=(.4, .6), | ||
flags=(False, False), use_bias=True) | ||
] | ||
|
||
@pytest.mark.parametrize("params", test_data_simple) | ||
@pytest.mark.nightly | ||
@pytest.mark.precommit | ||
def test_keras_gru_with_bias_float32(self, params, ie_device, precision, temp_dir, ir_version, | ||
use_legacy_frontend): | ||
self._test(*self.create_keras_gru_net(**params, ir_version=ir_version), | ||
ie_device, precision, temp_dir=temp_dir, ir_version=ir_version, | ||
use_legacy_frontend=use_legacy_frontend, **params) | ||
|
||
test_data_without_bias = [ | ||
dict(input_names=["x"], input_shapes=[[2, 2, 7]], input_type=tf.float32, units=1, | ||
activation='tanh', recurrent_activation='sigmoid', dropouts=(.0, .3), use_bias=False, | ||
flags=(False, False)), | ||
dict(input_names=["x"], input_shapes=[[3, 8, 3]], input_type=tf.float32, units=4, | ||
activation='relu', recurrent_activation='sigmoid', dropouts=(.7, .4), use_bias=False, | ||
flags=(False, False)), | ||
dict(input_names=["x"], input_shapes=[[4, 2, 2]], input_type=tf.float32, units=2, | ||
activation='elu', recurrent_activation='tanh', dropouts=(.0, .5), use_bias=False, | ||
flags=(False, False)) | ||
] | ||
|
||
@pytest.mark.parametrize("params", test_data_without_bias) | ||
@pytest.mark.nightly | ||
@pytest.mark.precommit | ||
def test_keras_gru_without_bias_float32(self, params, ie_device, precision, temp_dir, | ||
ir_version, use_legacy_frontend): | ||
self._test(*self.create_keras_gru_net(**params, ir_version=ir_version), | ||
ie_device, precision, temp_dir=temp_dir, ir_version=ir_version, | ||
use_legacy_frontend=use_legacy_frontend, **params) | ||
|
||
test_data_different_flags = [ | ||
dict(input_names=["x"], input_shapes=[[2, 3, 2]], input_type=tf.float32, units=1, | ||
activation='elu', recurrent_activation='sigmoid', dropouts=(.0, .3), use_bias=True, | ||
flags=(True, False)), | ||
dict(input_names=["x"], input_shapes=[[4, 8, 3]], input_type=tf.float32, dropouts=(.1, .3), | ||
units=3, activation='relu', use_bias=False, recurrent_activation='tanh', | ||
flags=(False, True)), | ||
dict(input_names=["x"], input_shapes=[[4, 2, 7]], input_type=tf.float32, units=5, | ||
activation='relu', recurrent_activation='tanh', dropouts=(.2, .6), | ||
use_bias=True, flags=(False, False)), | ||
dict(input_names=["x"], input_shapes=[[4, 16, 2]], input_type=tf.float32, units=5, | ||
activation='relu', recurrent_activation='tanh', dropouts=(.2, .6), | ||
use_bias=True, flags=(False, True)), | ||
dict(input_names=["x"], input_shapes=[[4, 8, 7]], input_type=tf.float32, units=5, | ||
activation='elu', recurrent_activation='sigmoid', dropouts=(.2, .6), | ||
use_bias=True, flags=(True, True)), | ||
] | ||
|
||
@pytest.mark.parametrize("params", test_data_different_flags) | ||
@pytest.mark.nightly | ||
@pytest.mark.precommit | ||
@pytest.mark.xfail(reason="sporadic inference mismatch") | ||
def test_keras_gru_flags_float32(self, params, ie_device, precision, temp_dir, ir_version, | ||
use_legacy_frontend): | ||
self._test(*self.create_keras_gru_net(**params, ir_version=ir_version), | ||
ie_device, precision, temp_dir=temp_dir, ir_version=ir_version, | ||
use_legacy_frontend=use_legacy_frontend, **params) | ||
|
||
test_data_zero_recurrent_dropout = [ | ||
dict(input_names=["x"], input_shapes=[[8, 2, 3]], input_type=tf.float32, units=3, | ||
activation='elu', recurrent_activation='tanh', dropouts=(.7, .0), use_bias=True, | ||
flags=(False, False)), | ||
dict(input_names=["x"], input_shapes=[[4, 8, 5]], input_type=tf.float32, dropouts=(.6, .0), | ||
units=2, activation='elu', use_bias=True, recurrent_activation='tanh', | ||
flags=(False, False)), | ||
dict(input_names=["x"], input_shapes=[[4, 3, 1]], input_type=tf.float32, units=8, | ||
activation='elu', recurrent_activation='tanh', dropouts=(.5, .0), | ||
use_bias=True, flags=(True, False)), | ||
dict(input_names=["x"], input_shapes=[[3, 4, 2]], input_type=tf.float32, units=3, | ||
activation='elu', recurrent_activation='tanh', dropouts=(.7, .0), use_bias=True, | ||
flags=(True, False)), | ||
] | ||
|
||
@pytest.mark.parametrize("params", test_data_zero_recurrent_dropout) | ||
@pytest.mark.parametrize('input_shapes', [[[2, 3, 4]]]) | ||
@pytest.mark.parametrize('input_type', [np.float32, np.float64]) | ||
@pytest.mark.parametrize('units', [1, 2, 3]) | ||
@pytest.mark.parametrize('activation', ['tanh', 'relu', 'elu', 'linear']) | ||
@pytest.mark.parametrize('recurrent_activation', ['sigmoid', 'tanh', 'softmax']) | ||
@pytest.mark.parametrize('dropouts', [(.0, .0), (.0, .3), (.2, .4), ]) | ||
@pytest.mark.parametrize('use_bias', [True, False]) | ||
@pytest.mark.parametrize('flag1', [True, False]) | ||
@pytest.mark.parametrize('flag2', [True, False]) | ||
@pytest.mark.nightly | ||
@pytest.mark.precommit | ||
@pytest.mark.xfail(reason="50176") | ||
def test_keras_gru_flags_zero_recurrent_dropout_float32(self, params, ie_device, precision, | ||
temp_dir, ir_version, | ||
use_legacy_frontend): | ||
self._test(*self.create_keras_gru_net(**params, ir_version=ir_version), | ||
def test_keras_gru(self, input_shapes, input_type, units, | ||
activation, recurrent_activation, | ||
dropouts, use_bias, flag1, flag2, | ||
ie_device, precision, temp_dir, ir_version, | ||
use_legacy_frontend): | ||
params = {} | ||
params['input_shapes'] = input_shapes | ||
self._test(*self.create_keras_gru_net(input_shapes, input_type, units, | ||
activation, recurrent_activation, | ||
dropouts, use_bias, flag1, flag2), | ||
ie_device, precision, temp_dir=temp_dir, ir_version=ir_version, | ||
use_legacy_frontend=use_legacy_frontend, **params) |