-
Notifications
You must be signed in to change notification settings - Fork 73
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
37064a5
commit fd12a46
Showing
4 changed files
with
592 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
167 changes: 167 additions & 0 deletions
167
src/dr/inference/distribution/GaussianMarkovRandomFieldModel2.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,167 @@ | ||
/* | ||
* MultivariateNormalDistributionModel.java | ||
* | ||
* Copyright (c) 2002-2020 Alexei Drummond, Andrew Rambaut and Marc Suchard | ||
* | ||
* This file is part of BEAST. | ||
* See the NOTICE file distributed with this work for additional | ||
* information regarding copyright ownership and licensing. | ||
* | ||
* BEAST is free software; you can redistribute it and/or modify | ||
* it under the terms of the GNU Lesser General Public License as | ||
* published by the Free Software Foundation; either version 2 | ||
* of the License, or (at your option) any later version. | ||
* | ||
* BEAST is distributed in the hope that it will be useful, | ||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
* GNU Lesser General Public License for more details. | ||
* | ||
* You should have received a copy of the GNU Lesser General Public | ||
* License along with BEAST; if not, write to the | ||
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, | ||
* Boston, MA 02110-1301 USA | ||
*/ | ||
|
||
package dr.inference.distribution; | ||
|
||
import dr.inference.hmc.GradientWrtParameterProvider; | ||
import dr.inference.hmc.HessianWrtParameterProvider; | ||
import dr.inference.model.*; | ||
import dr.inferencexml.distribution.MultivariateNormalDistributionModelParser; | ||
import dr.math.distributions.GaussianMarkovRandomField2; | ||
import dr.math.distributions.GaussianProcessRandomGenerator; | ||
|
||
|
||
/** | ||
* A class that acts as a model for gaussian random walk | ||
* | ||
* @author Marc Suchard | ||
* Pratyusa Datta | ||
*/ | ||
|
||
public class GaussianMarkovRandomFieldModel2 extends AbstractModelLikelihood implements | ||
GradientWrtParameterProvider, HessianWrtParameterProvider { | ||
|
||
public GaussianMarkovRandomFieldModel2(Parameter coefficients, | ||
GaussianMarkovRandomField2 distribution) { | ||
super(MultivariateNormalDistributionModelParser.NORMAL_DISTRIBUTION_MODEL); | ||
|
||
this.coefficients = coefficients; | ||
this.distribution = distribution; | ||
this.dim = coefficients.getDimension(); | ||
|
||
addModel(distribution); | ||
addVariable(coefficients); | ||
} | ||
|
||
|
||
public Parameter getincrementPrecision() { return distribution.getincrementPrecision(); } | ||
|
||
public Parameter getstart() { return distribution.getstart(); } | ||
public double[][] getScaleMatrix() { | ||
return distribution.getScaleMatrix(); | ||
} | ||
|
||
|
||
public double[] getMean() { | ||
return distribution.getMean(); | ||
} | ||
|
||
public String getType() { | ||
return distribution.getType(); | ||
} | ||
|
||
// ***************************************************************** | ||
// Interface Model | ||
// ***************************************************************** | ||
@Override | ||
public Likelihood getLikelihood() { | ||
return this; | ||
} | ||
|
||
@Override | ||
public Model getModel() { | ||
return this; | ||
} | ||
|
||
@Override | ||
public Parameter getParameter() { | ||
return coefficients; | ||
} | ||
|
||
@Override | ||
public final void makeDirty() { | ||
// Do nothing | ||
} | ||
|
||
@Override | ||
public final void handleModelChangedEvent(Model model, Object object, int index) { | ||
// no intermediates need to be recalculated... | ||
} | ||
|
||
@Override | ||
public final void handleVariableChangedEvent(Variable variable, int index, Parameter.ChangeType type) { | ||
// no intermediates need to be recalculated... | ||
} | ||
|
||
@Override | ||
public void storeState() { | ||
// Do nothing | ||
} | ||
|
||
@Override | ||
public void restoreState() { | ||
// Do nothing | ||
} | ||
|
||
@Override | ||
public void acceptState() { | ||
} // no additional state needs accepting | ||
|
||
|
||
@Override | ||
public int getDimension() { | ||
return dim; | ||
} | ||
|
||
|
||
// ***************************************************************** | ||
// Interface DensityModel | ||
// ***************************************************************** | ||
|
||
public Parameter getIncrementPrecision() { return distribution.getincrementPrecision(); } | ||
|
||
public Parameter getStart() { return distribution.getstart(); } | ||
|
||
public double getLogLikelihood() { | ||
return distribution.logPdf(coefficients.getParameterValues()); | ||
} | ||
|
||
public double[] getGradientLogDensity() { | ||
return distribution.gradLogPdf(coefficients.getParameterValues()); | ||
} | ||
|
||
|
||
// ************************************************************** | ||
// Private instance variables and functions | ||
// ************************************************************** | ||
|
||
|
||
|
||
|
||
private final Parameter coefficients; | ||
private final GaussianMarkovRandomField2 distribution; | ||
private final int dim; | ||
|
||
|
||
@Override | ||
public double[] getDiagonalHessianLogDensity() { | ||
return new double[0]; | ||
} | ||
|
||
@Override | ||
public double[][] getHessianLogDensity() { | ||
return new double[0][]; | ||
} | ||
} |
89 changes: 89 additions & 0 deletions
89
src/dr/inferencexml/distribution/GaussianMarkovRandomFieldParser2.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
/* | ||
* MultivariateNormalDistributionModelParser.java | ||
* | ||
* Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard | ||
* | ||
* This file is part of BEAST. | ||
* See the NOTICE file distributed with this work for additional | ||
* information regarding copyright ownership and licensing. | ||
* | ||
* BEAST is free software; you can redistribute it and/or modify | ||
* it under the terms of the GNU Lesser General Public License as | ||
* published by the Free Software Foundation; either version 2 | ||
* of the License, or (at your option) any later version. | ||
* | ||
* BEAST is distributed in the hope that it will be useful, | ||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
* GNU Lesser General Public License for more details. | ||
* | ||
* You should have received a copy of the GNU Lesser General Public | ||
* License along with BEAST; if not, write to the | ||
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, | ||
* Boston, MA 02110-1301 USA | ||
*/ | ||
|
||
package dr.inferencexml.distribution; | ||
|
||
import dr.inference.distribution.GaussianMarkovRandomFieldModel2; | ||
import dr.inference.model.Model; | ||
import dr.inference.model.Parameter; | ||
import dr.inference.model.Variable; | ||
import dr.math.distributions.GaussianMarkovRandomField2; | ||
import dr.xml.*; | ||
|
||
public class GaussianMarkovRandomFieldParser2 extends AbstractXMLObjectParser { | ||
|
||
public static final String NORMAL_DISTRIBUTION_MODEL = "gaussianMarkovRandomField2"; | ||
private static final String DIMENSION = "dim"; | ||
private static final String PRECISION = "precision"; | ||
private static final String START = "start"; | ||
|
||
public String getParserName() { | ||
|
||
return NORMAL_DISTRIBUTION_MODEL; | ||
} | ||
|
||
public Object parseXMLObject(XMLObject xo) throws XMLParseException { | ||
|
||
Parameter coefficients = (Parameter) xo.getChild(Parameter.class); | ||
|
||
int dim = coefficients.getDimension(); | ||
|
||
XMLObject cxo = xo.getChild(PRECISION); | ||
Parameter incrementPrecision = (Parameter) cxo.getChild(Parameter.class); | ||
|
||
if (incrementPrecision.getParameterValue(0) <= 0.0) { | ||
throw new XMLParseException("Scale must be > 0.0"); | ||
} | ||
|
||
cxo = xo.getChild(START); | ||
Parameter start = (Parameter) cxo.getChild(Parameter.class); | ||
|
||
|
||
|
||
return new GaussianMarkovRandomFieldModel2(coefficients, new GaussianMarkovRandomField2(dim, incrementPrecision, start)); | ||
} | ||
|
||
public XMLSyntaxRule[] getSyntaxRules() { | ||
return rules; | ||
} | ||
|
||
private final XMLSyntaxRule[] rules = { | ||
// AttributeRule.newIntegerRule(DIMENSION), | ||
new ElementRule(PRECISION, | ||
new XMLSyntaxRule[]{new ElementRule(Parameter.class)}), | ||
new ElementRule(START, | ||
new XMLSyntaxRule[]{new ElementRule(Parameter.class)}), | ||
}; | ||
|
||
public String getParserDescription() { | ||
return "Describes a normal distribution with a given mean and precision " + | ||
"that can be used in a distributionLikelihood element"; | ||
} | ||
|
||
public Class getReturnType() { | ||
return GaussianMarkovRandomFieldModel2.class; | ||
} | ||
|
||
} |
Oops, something went wrong.