Fast and easy to use standalone header only 2D astar algorithm library in C++20.
I made it for learning how the astar algorithm works, try to make the fastest, tested and configurable as possible for my needs (future games and works).
It is an astar algorithm, the main idea is to find the shortest path between two points in a grid/map.
- Header-only library C++20
- Support 2D map
- Support 3D map
- Configurable heuristic function and movement cost
- Configurable (diagonal and more) movement
- Debug mode in template argument and lambda function
- Support direct access and not access to the map
- Unit tests and benchmarks
- Working CI (WIP)
You can set the heuristic function to calculate the distance between two points and return the cost.
Heuristic | C++ Function | Description |
---|---|---|
euclidean | AStar::Heuristic::euclidean | Default |
manhattan | AStar::Heuristic::manhattan | |
octagonal | AStar::Heuristic::octagonal | |
chebyshev | AStar::Heuristic::chebyshev | |
euclideanNoSQR | AStar::Heuristic::euclideanNoSQR | |
dijkstra | AStar::Heuristic::dijkstra | Always return 0 |
This project is a header-only library and easy to use, just copy the include/astar
folder in your project and include the astar/astar.hpp
header or via CMake FetchContent_Declare.
Now you can use the Astar::Astar
class to find the shortest path between two points in a grid.
#include <astar/astar.hpp>
#include <iostream>
auto main() -> int {
// Create the template class with optional a type (e.g. uint32_t) and a boolean
// if you want enable debug mode (AStar::AStar<uint32_t, true>)
AStar::AStar pathFinder;
// Define the map size (width, height)
pathFinder.setWorldSize({10, 10});
// Set the heuristic function (manhattan, euclidean, octagonal etc...), it is optional, default is euclidean
pathFinder.setHeuristic(AStar::Heuristic::manhattan);
// if you want to enable diagonal movement, it is optional, default is false
pathFinder.setDiagonalMovement(true);
// Add a obstacle point (5, 5) and (5, 6)
pathFinder.addObstacle({5, 5});
pathFinder.addObstacle({5, 6});
// Find the path from (0, 0) to (9, 9)
auto path = pathFinder.findPath({0, 0}, {9, 9});
// Print the path
for (auto& p : path) {
std::cout << p.x << " " << p.y << std::endl;
}
return 0;
}
You can use the alternative version of the library if you want astar have direct access to the map, this version is faster than the non-direct access version.
#include <astar/astar.hpp>
#include <iostream>
auto main() -> int {
// Create the template class with optional a type (e.g. uint32_t) and a boolean
// if you want enable debug mode (AStar::AStar<uint32_t, true>)
AStar::AStarFast pathFinder;
// Set the heuristic function (manhattan, euclidean, octagonal etc...), it is optional, default is euclidean
pathFinder.setHeuristic(AStar::Heuristic::manhattan);
// if you want to enable diagonal movement, it is optional, default is false
pathFinder.setDiagonalMovement(true);
// Create world 9x9 filled with 0
std::vector<uint32_t> world(9 * 9, 0);
// set lambda function to check if is an obstacle (value == 1)
auto isObstacle = [](uint32_t value) -> bool { return value == 1; };
pathFinder.setObstacle(isObstacle);
// Add a obstacle point (5, 5) and (5, 6)
world[5 + 5 * 9] = 1;
world[5 + 6 * 9] = 1;
// Find the path from (0, 0) to (9, 9), it it equal to 0, then the path is not found
// This version of findPath() is faster due direct access to the world
auto path = pathFinder.findPath({0, 0}, {9, 9}, world, {9, 9});
// Print the path
for (auto& p : path) {
std::cout << p.x << " " << p.y << std::endl;
}
return 0;
}
You can enable the debug mode to call a lambda function when new node is visiting by the algorithm and when new node is added to the open list.
#include <iostream>
#include <astar/astar.hpp>
auto main() -> int {
// Enable debug mode with template argument, this helps avoid performance issues on non-debug classes
AStar::AStar<uint32_t, true> pathFinder;
// Set lambda function to debug current node
std::function<void(const AStar::Node<uint32_t>* node)> debugCurrentNode = [](const AStar::Node<uint32_t>* node) {
std::cout << "Current node: " << node->pos.x << ", " << node->pos.y << std::endl;
};
pathFinder.setDebugCurrentNode(debugCurrentNode);
// Set lambda function to debug open node
std::function<void(const AStar::Node<uint32_t>* node)> debugOpenNode = [](const AStar::Node<uint32_t>* node) {
std::cout << "Add to open list: " << node->pos.x << ", " << node->pos.y << std::endl;
};
pathFinder.setDebugOpenNode(debugOpenNode);
// Define the map size (width, height)
pathFinder.setWorldSize({10, 10});
// Set the heuristic function (manhattan, euclidean, octagonal etc...), it is optional, default is euclidean
pathFinder.setHeuristic(AStar::Heuristic::manhattan);
// if you want to enable diagonal movement, it is optional, default is false
pathFinder.setDiagonalMovement(true);
// Add a obstacle point (5, 5) and (5, 6)
pathFinder.addObstacle({5, 5});
pathFinder.addObstacle({5, 6});
// Find the path from (0, 0) to (9, 9)
auto path = pathFinder.findPath({0, 0}, {9, 9});
// Print the path
for (auto& p : path) {
std::cout << p.x << " " << p.y << std::endl;
}
return 0;
}
See the BUILDING document.
See the CONTRIBUTING document.
You can find here the sources, references, libs and ideas that I have used to make this library.
Sources and references that I have used to make this library.
- Wikipedia A* search algorithm
- A* Pathfinding
- AStar
- Introduction to A*
- Easy A* (star) Pathfinding
- a-star$
- A* Search Algorithm
The list of others astar implementations that I have benchmarked to compare the performance of my implementation.
Libraries used in this project.