Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
177 changes: 94 additions & 83 deletions flow/benchmarks/baselines/bottleneck0.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,86 +32,97 @@
DISABLE_RAMP_METER = True
AV_FRAC = 0.10

vehicles = Vehicles()
vehicles.add(veh_id="human",
speed_mode=9,
routing_controller=(ContinuousRouter, {}),
lane_change_mode=0,
num_vehicles=1 * SCALING)

controlled_segments = [("1", 1, False), ("2", 2, True), ("3", 2, True),
("4", 2, True), ("5", 1, False)]
num_observed_segments = [("1", 1), ("2", 3), ("3", 3),
("4", 3), ("5", 1)]
additional_env_params = {
"target_velocity": 40,
"disable_tb": True,
"disable_ramp_metering": True,
"controlled_segments": controlled_segments,
"symmetric": False,
"observed_segments": num_observed_segments,
"reset_inflow": False,
"lane_change_duration": 5,
"max_accel": 3,
"max_decel": 3,
"inflow_range": [1000, 2000]
}

# flow rate
flow_rate = 1900 * SCALING

# percentage of flow coming out of each lane
inflow = InFlows()
inflow.add(veh_type="human", edge="1",
vehs_per_hour=flow_rate,
departLane="random", departSpeed=10)

traffic_lights = TrafficLights()
if not DISABLE_TB:
traffic_lights.add(node_id="2")
if not DISABLE_RAMP_METER:
traffic_lights.add(node_id="3")

additional_net_params = {"scaling": SCALING}
net_params = NetParams(in_flows=inflow,
no_internal_links=False,
additional_params=additional_net_params)

sumo_params = SumoParams(
sim_step=0.5,
sumo_binary="sumo-gui",
print_warnings=False,
restart_instance=False,
)

env_params = EnvParams(
evaluate=True, # Set to True to evaluate traffic metrics
warmup_steps=40,
sims_per_step=1,
horizon=HORIZON,
additional_params=additional_env_params,
)

initial_config = InitialConfig(
spacing="uniform",
min_gap=5,
lanes_distribution=float("inf"),
edges_distribution=["2", "3", "4", "5"],
)

scenario = BottleneckScenario(name="bay_bridge_toll",
generator_class=BottleneckGenerator,
vehicles=vehicles,
net_params=net_params,
initial_config=initial_config,
traffic_lights=traffic_lights)

env = DesiredVelocityEnv(env_params, sumo_params, scenario)

exp = SumoExperiment(env, scenario)

num_runs = 2
results = exp.run(num_runs, HORIZON)
avg_outflow = np.mean([outflow[-1] for outflow in results["per_step_returns"]])
print('The average outflow over 500 seconds '
'across {} runs is {}'.format(num_runs, avg_outflow))

def bottleneck0_baseline(num_runs, sumo_binary="sumo-gui"):
vehicles = Vehicles()
vehicles.add(veh_id="human",
speed_mode=9,
routing_controller=(ContinuousRouter, {}),
lane_change_mode=0,
num_vehicles=1 * SCALING)

controlled_segments = [("1", 1, False), ("2", 2, True), ("3", 2, True),
("4", 2, True), ("5", 1, False)]
num_observed_segments = [("1", 1), ("2", 3), ("3", 3),
("4", 3), ("5", 1)]
additional_env_params = {
"target_velocity": 40,
"disable_tb": True,
"disable_ramp_metering": True,
"controlled_segments": controlled_segments,
"symmetric": False,
"observed_segments": num_observed_segments,
"reset_inflow": False,
"lane_change_duration": 5,
"max_accel": 3,
"max_decel": 3,
"inflow_range": [1000, 2000]
}

# flow rate
flow_rate = 1900 * SCALING

# percentage of flow coming out of each lane
inflow = InFlows()
inflow.add(veh_type="human", edge="1",
vehs_per_hour=flow_rate,
departLane="random", departSpeed=10)

traffic_lights = TrafficLights()
if not DISABLE_TB:
traffic_lights.add(node_id="2")
if not DISABLE_RAMP_METER:
traffic_lights.add(node_id="3")

additional_net_params = {"scaling": SCALING}
net_params = NetParams(in_flows=inflow,
no_internal_links=False,
additional_params=additional_net_params)

sumo_params = SumoParams(
sim_step=0.5,
sumo_binary=sumo_binary,
print_warnings=False,
restart_instance=False,
)

env_params = EnvParams(
evaluate=True, # Set to True to evaluate traffic metrics
warmup_steps=40,
sims_per_step=1,
horizon=HORIZON,
additional_params=additional_env_params,
)

initial_config = InitialConfig(
spacing="uniform",
min_gap=5,
lanes_distribution=float("inf"),
edges_distribution=["2", "3", "4", "5"],
)

scenario = BottleneckScenario(name="bay_bridge_toll",
generator_class=BottleneckGenerator,
vehicles=vehicles,
net_params=net_params,
initial_config=initial_config,
traffic_lights=traffic_lights)

env = DesiredVelocityEnv(env_params, sumo_params, scenario)

exp = SumoExperiment(env, scenario)

results = exp.run(num_runs, HORIZON)
avg_outflow = np.mean([outflow[-1]
for outflow in results["per_step_returns"]])

return avg_outflow


if __name__ == "__main__":
runs = 2 # number of simulations to average over
res = bottleneck0_baseline(num_runs=runs)

print('---------')
print('The average outflow over 500 seconds '
'across {} runs is {}'.format(runs, res))
179 changes: 95 additions & 84 deletions flow/benchmarks/baselines/bottleneck1.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
"""
This script is used to quickly evaluate a baseline for bottleneck0.
This script is used to quickly evaluate a baseline for bottleneck1.
Baseline is no AVs.

Bottleneck in which the actions are specifying a desired velocity in a segment
Expand Down Expand Up @@ -33,86 +33,97 @@
DISABLE_RAMP_METER = True
AV_FRAC = 0.25

vehicles = Vehicles()
vehicles.add(veh_id="human",
speed_mode=9,
routing_controller=(ContinuousRouter, {}),
lane_change_mode=1621,
num_vehicles=1 * SCALING)

controlled_segments = [("1", 1, False), ("2", 2, True), ("3", 2, True),
("4", 2, True), ("5", 1, False)]
num_observed_segments = [("1", 1), ("2", 3), ("3", 3),
("4", 3), ("5", 1)]
additional_env_params = {
"target_velocity": 40,
"disable_tb": True,
"disable_ramp_metering": True,
"controlled_segments": controlled_segments,
"symmetric": False,
"observed_segments": num_observed_segments,
"reset_inflow": False,
"lane_change_duration": 5,
"max_accel": 3,
"max_decel": 3,
"inflow_range": [1000, 2000]
}

# flow rate
flow_rate = 1900 * SCALING

# percentage of flow coming out of each lane
inflow = InFlows()
inflow.add(veh_type="human", edge="1",
vehs_per_hour=flow_rate,
departLane="random", departSpeed=10)

traffic_lights = TrafficLights()
if not DISABLE_TB:
traffic_lights.add(node_id="2")
if not DISABLE_RAMP_METER:
traffic_lights.add(node_id="3")

additional_net_params = {"scaling": SCALING}
net_params = NetParams(in_flows=inflow,
no_internal_links=False,
additional_params=additional_net_params)

sumo_params = SumoParams(
sim_step=0.5,
sumo_binary="sumo-gui",
print_warnings=False,
restart_instance=False,
)

env_params = EnvParams(
evaluate=True, # Set to True to evaluate traffic metrics
warmup_steps=40,
sims_per_step=1,
horizon=HORIZON,
additional_params=additional_env_params,
)

initial_config = InitialConfig(
spacing="uniform",
min_gap=5,
lanes_distribution=float("inf"),
edges_distribution=["2", "3", "4", "5"],
)

scenario = BottleneckScenario(name="bay_bridge_toll",
generator_class=BottleneckGenerator,
vehicles=vehicles,
net_params=net_params,
initial_config=initial_config,
traffic_lights=traffic_lights)

env = DesiredVelocityEnv(env_params, sumo_params, scenario)

exp = SumoExperiment(env, scenario)

num_runs = 2
results = exp.run(num_runs, HORIZON)
avg_outflow = np.mean([outflow[-1] for outflow in results["per_step_returns"]])
print('The average outflow over 500 seconds '
'across {} runs is {}'.format(num_runs, avg_outflow))

def bottleneck1_baseline(num_runs, sumo_binary="sumo-gui"):
vehicles = Vehicles()
vehicles.add(veh_id="human",
speed_mode=9,
routing_controller=(ContinuousRouter, {}),
lane_change_mode=1621,
num_vehicles=1 * SCALING)

controlled_segments = [("1", 1, False), ("2", 2, True), ("3", 2, True),
("4", 2, True), ("5", 1, False)]
num_observed_segments = [("1", 1), ("2", 3), ("3", 3),
("4", 3), ("5", 1)]
additional_env_params = {
"target_velocity": 40,
"disable_tb": True,
"disable_ramp_metering": True,
"controlled_segments": controlled_segments,
"symmetric": False,
"observed_segments": num_observed_segments,
"reset_inflow": False,
"lane_change_duration": 5,
"max_accel": 3,
"max_decel": 3,
"inflow_range": [1000, 2000]
}

# flow rate
flow_rate = 1900 * SCALING

# percentage of flow coming out of each lane
inflow = InFlows()
inflow.add(veh_type="human", edge="1",
vehs_per_hour=flow_rate,
departLane="random", departSpeed=10)

traffic_lights = TrafficLights()
if not DISABLE_TB:
traffic_lights.add(node_id="2")
if not DISABLE_RAMP_METER:
traffic_lights.add(node_id="3")

additional_net_params = {"scaling": SCALING}
net_params = NetParams(in_flows=inflow,
no_internal_links=False,
additional_params=additional_net_params)

sumo_params = SumoParams(
sim_step=0.5,
sumo_binary=sumo_binary,
print_warnings=False,
restart_instance=False,
)

env_params = EnvParams(
evaluate=True, # Set to True to evaluate traffic metrics
warmup_steps=40,
sims_per_step=1,
horizon=HORIZON,
additional_params=additional_env_params,
)

initial_config = InitialConfig(
spacing="uniform",
min_gap=5,
lanes_distribution=float("inf"),
edges_distribution=["2", "3", "4", "5"],
)

scenario = BottleneckScenario(name="bay_bridge_toll",
generator_class=BottleneckGenerator,
vehicles=vehicles,
net_params=net_params,
initial_config=initial_config,
traffic_lights=traffic_lights)

env = DesiredVelocityEnv(env_params, sumo_params, scenario)

exp = SumoExperiment(env, scenario)

results = exp.run(num_runs, HORIZON)
avg_outflow = np.mean([outflow[-1]
for outflow in results["per_step_returns"]])

return avg_outflow


if __name__ == "__main__":
runs = 2 # number of simulations to average over
res = bottleneck1_baseline(num_runs=runs)

print('---------')
print('The average outflow over 500 seconds '
'across {} runs is {}'.format(runs, res))
Loading